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SEMANTICAL ANALYSIS OF MODAL LOGIC I
NORMAL MODAL PROPOSITIONAL CALCULI

by SauL A. KripxE in Cambridge, Mass. (U.S.A.)

The present paper attempts to extend the results of [1], in the domain of the
propositional calculus, to a class of modal systems called ‘“‘normal.” This class
includes M and S4 as well as S5; we will also treat a new system, the “BrRouwEr-
sche’” system. In sequels to the present paper, we intend to extend the treatment
to non-normal modal propositional calculi (see (7] for an enumeration of the systems
included), and to guantificational and identity extensions of all these propositional
systems of modal logic (see again [7] for details; but readers of [1] will have an
inkling of how guantificational extensions are to be carried out). Thorough acqua-
intance with [1] is presupposed; and many of the proofs in this paper (which, by
reason of the many systems here treated, is occasionally somewhat compressed),
are better comprehended by a comparison with the corresponding proofs in [1].

1. Normal modal propositional calculi

A modal propositional calculus (MPC) is given by a denumerably infinite list of
propositional variables P,¢), R, ..., which can be combined, using the connectives
Ay ~, O, to form formulae (wifs) as in [1]. (The propositional variables are thus
the atomic formulae of the systems. Below we will use the letters P, Q, R, ..., as
metavariables ranging over atomic formulae; 4, B, U, ..., as metavariables over
arbitrary formulae.) A modal propositional calculus is called normal iff it contains
as theorems the axiom schemes Al and A3 of [1], and contains as admissible (deri-
vable) rules the two rules of inference R1 and R2 of [1]:

Al. 0424

A3. o(4>By.>D.0d>0B

Ri. If ~A4A and - A2 B, then B.
R2. If -4, then --04.

(The non-normal systems to be considered in another paper will fail to satisfy R2;
in the paper on quantificational extensions we will also consider systems that are
non-normal in the sense that they are modified in the direction of Prior’s Q.)

(1
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The system M (T) of Frvs- vox WRIgHT (cf. [3], [19]), is given by the axioms
Al and A3, and the rules R1 and R2. The system S4 is obtained by adding to M

A4 0dd>o004d

as an axiom scheme. The BrRouwERsche axiom (cf. [4], p. 497) is the scheme:
A>Q oA

"The BrouwERsche system is obtained by adding the BrRouwERsche axiom to M.
Finally, 85 is defined as in [1]; i.e., it is M plus the scheme:

A2, ~pd420~04d.

It is known (see the appendix to [4]) that S4 plus the BRouwERsche axiom is
equivalent to S5. The present paper will make it clear that this theorem is essenti-
ally equivalent to one which is better known and simpler: A reflexive, transitive,
and symmetric relation partitions its field into disjoint equivalence classes (cf. 2.1,
next to last remark; also 2.2).

2. Normal models

A normal model structure (n. m.s.) is an ordered triple (G, K, R), where K is
a non-empty set, G € K, and R is a reflexive relation defined on K. If R is trans-
itive, we call the n.m.s. an S84 model structure; if R is symmetric, we call it a
BrouweRrsche model structure; if R is an equivalence relation, we call it an S5
model structure. A normal model structure is also called an M model structure. In
this paper the adjective ‘“‘normal” will often be omitted, and we will speak simply
of a “model structure” (m.s.).

An M (5S4, S5, BRouwERsche) model for a wif A of M (S84, S5, the BRouwERsche
system) is a binary function @ (P, H) associated with a given M (S4, S5, BROUWER-
sche) model structure (G, K, R). The first variable ‘P’ ranges over atomic sub-
formulae of A, while the second variable ‘H’ ranges over the members of K. The
range of @ is the set {T, F}; i.e.,, ®(P,H) =T or ®(P,H) =F.

Now given a model @ associated with a m.s. (G, K, R), we will define for any
subformula B of 4, and any H€ K, a value @ (B, H) (which will be T or F); i.e.,
we define a unique extension of @ in which the first argument ranges over all
subformulae of 4, not merely atomic subformulae. If B is atomic, (i.e., is a pro-
positional variable), the corresponding value @ (B, H) has already been defined.
For more complex formulae we define the valuation by induction on the number
of connectives in the formula. Assume that @ (B, H) and @ (C, H) have already
been defined for each HE K. If @(B,H) = @(C,H) =T, then ®(BA C, H) =T,
otherwise @(BAC,H)=F. If ®B,H) =T, then & (~B, H) = F; otherwise if
@(B,H) =F, @(~B,H) =T. Finally, to define @(0B, H): If ®(B,H) =T for
every H' in K such that H R H’, we say @ (0B, H) = T; otherwise, if there exists
H’ such that HRH’ and @ (B, H') = F, we say @ (OB, H) = F.
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We say a formula 4 is frue in a model @ associated with a m.s. (G, K, R) if
DA, G) =T, false,if @ (4, G) = F, We say 4 is valid if it is true in all its models!);
satisfiable if it is true in at least one of them. We say shall show below (completeness
and consistency theorems) that a formula is valid if and only if it is provable in
the appropriate system.?)

2.1. Informal explanation

In [1] the writer introduced a modelling for S5 based on the notion of a “pos-
sible world”. We were given a set K of possible worlds, with one element G singled
out as the “real’” world. A proposition was to be necessary iff it was “‘true in all
possible worlds”.

The present treatment generalizes that of [1] in.the following respects: (1) Again
we have a set K of “‘possible worlds”; again the real world G is a distinguished
element. Every atomic formula (i.e., propositional variable) P is assigned a truth.
value in each world H; in fact, this truth-value is @ (P, H). Here we already have
a slight divergence from the treatment in [1]. For in [1], we did not have an auxiliary
function @ to assign a truth.value to P in the world H; instead H itself was a “com-
plete assignment”, that is, a function assigning a truth-value to every atomic sub-
formula of a formula 4. On this definition, “worlds” and complete assignments
are identified; so distinet worlds give distinet complete assignments. This last
clause means that there can be no two worlds in which the same truth-value is assigned
to each atomic formula. Now this assumption turns out to be convenient perhaps
for S5, but it is rather inconvenient when we treat normal MPC’s in general. In
the present paper we drop it; we are given an arbitrary set K of “possible worlds”,

1) Actually, we define validity in M (S4, S5, BRouwERrsche) as truth in all M (S4, S5,
Brouwsrsche) models. Explicit mention of a particular system, M, 84, S5, or BROUWERsche,
is omitted here and henceforth whenever the same remarks or definitions apply to all four
systems. It will be understood that for “model” or ““m.s.” we read M, S4, S5, or BROUWERsche
model or m.s., the other definitions being correspondingly relativized to a particular system.

2) For systems based on S4 and M and (with his initial formulation modified; see below})
on 85, HINTIKKA has discovered a modelling similar to the present one. T.J. SMILEY and his
pupils have discovered modelling for these three systems, based on McKixsey (9], which,
though somewhat further removed, is probably basically equivalent to the one given here;
and I have heard lately that McKinsEy himself left an unpublished modelling of his own.
BavarT [8] has proved the completeness of S5* independently of [1]. GuiLLAUME (8] has used
semantic tableaux in a topological investigation of M and S4; GRNTZEN rules similarly to the
tableau rules are given in [10], [11], [12]. The modelling for modal logic given in KANGER [12],
though more complex, is similar to that in the present paper. The most surprising antici-
pation of the present theory, discovered just as this paper was almost completed, is the algebraic
analogue in JonssoN and TARskr [17]. Independently and in ignorance of {17] (though of course
much later), the present writer derived its main theorem by an algebraic analogue of his.
semantical methods; the proof will appear elsewhere. None of these authors (except for some
initial impetus from CUrRY [10}) has been compared in detail by the present writer with his
own work, which is independent of them; a detailed comparison may be useful to others.
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a distinguished ‘“‘real world” G, and a function @ (P, H) assigning to each proposi-
tion P a truth-value in the world H. (2) A deviation from [1] of more consequence
is found in the use of the relation R. Intuitively we interpret the relation R as
follows: Given any two worlds H,, H, € K, we read “H; R Hy;” as H, is ““possible
relative to H,”, “possible in H,”, or ‘“‘related to H;”; that is to say, every pro-
position true in H, is to be possible in H,. Thus the “absolute” notion. of possible
world in [1] (where every world was possible relative to every other) gives way to
relative notion, of one world being possible relative to another. It is clear that
every world H is possible relative to itself; for this simply says that every pro-
position true in H is also possible in H. In accordance with this modified view of
“‘possible worlds”’, we evaluate a formula 4 as necessary in a world H, if it is true
in every world possible relative to H,; i.e., @ (04, H,) =T iff @ (4, Hy) =T for
each Hy such that H, R Hy. Dually, 4 is possible in H, iff there exists H,, possible
relative to H,, in which A4 is true.

Finally, we can ask various questions regarding the relation R, e.g., whether
it is transitive. Given H, R H, and Hy R H,, does it follow that H, R H;? To say
that H; R H, is to say that any formula A4 frue in H; is possible in Hy (i.e., &4
is true in H,); but then, since H, R H,, it follows in turn that G4 is possible (4 is
“possibly possible” and <A is true) in H;. In order to assert that H, R Hy, we
need to show that if 4 is true in H,, it is possible in H,; but we have shown above
that A is at least possibly possible in H;; so the additional reduction axiom we need
in order to assert H; R Hy is “what is possibly possible is possible”! This reduction
axiom of S4 boils down to the assertion that R is transitive. Similarly, the BROUWER-
sche axiom says that R is symmetric. For let 4 20 O A hold and let H; R Hy;
then we will have Hy R H, if we can show that anything ¢rue in H, is possible in H,.
But if 4 is true in H,, by the BRouUwERsche axiom A is necessary in H,; that
is, it is true in all worlds possible relative to H,. In particular, &P is true in H,,
Q.E.D. The reduction axioms of classical modal logic reduce to simple properties
(2bove and beyond reflexivity) of the relation R. If we abandon the relation R and
just use the set K as in [1] (or equivalently, we let R be the relation holding between
every pair of elements of K), then we are saying that every possible proposition
is necessarily possible, the characteristic axiom of 85. It turns out that we get
the same reduction axiom, however, if we simply assume that R is an equivalence
relation; see 2.2 below.

(3) One minor deviation from [1]: In the present paper, if @ (B, G) = T, we say
that B is true in the model @; previously we said B was valid in the model. The
present terminology is clearly an improvement.

2.2. Connected models

Let R* be the “ancestral” of R, in the sense of [2].1) A m.s. (G, K, R) is called
connected iff for all HE K, G R*H. A model @ is connected if it is defined on a

1) Similarly for the relation “S” below, S* will be its ancestral.
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connected model structure. We show that every satisfiable formula has a connected
model (equivalently, that every non-valid formula has a connected countermodel).
(Here if A4 is a formula, @ is a model for 4 iff 4 is true in @; otherwise, a counter-
model.)

Let 4 be satistiable in a model @ (P, H) defined on a m.s. (G, K, R). Let K’
be the sct of all H € K such that G R* H, let R’ be the restriction of R to K’, and
let @' (P, H) be @ with H restricted to K’. Then (G, K’, R’) is a m.s., and @’ is
a model in (G, K’, R’). Clearly @’ is connected. We show by induction that for
any subformula B of A, and HE K/, @’(B, H) = @ (B, H). (Hence it will follow
that, since @(4,G) =T, @'(4,G) =T, so that @’ is a model of 4 as desired.)
It B is atomic, the result is immediate. If the result has already been proved for C
and D, and Bis C A D or ~C, the verification for B is trivial. If Bis 0 C, we carry
out the induction step thus: We notice that, if H€ K’, H R’ H’ implies H’ € K’,
and hence H R H’. So, for H€ K/, H R H’ iff H R’ H'. By the inductive hypothesis,
for HE€K', @(C,H)= Q' (C,H). Now (1) @(O0C,H)=T iff VI'€K sa.t.
HRH, Q(C, H)=T; )" (0C,H)=Tiff VH EK' s.t. HRH,?'(C,H)=T.
— The preceding discussion shows that if H € K’, he right hand sides of (1) and (2)
are equivalent; so @(0C,H) =T iff @' (0C,H) =T, and hence @ (O C, H) =
= @'(0C, H), as desired.

So without loss of generality, we could restrict our considerations to connected
models. Note that in a connected model in] which R is an equivalence relation, any
two worlds are related. This fact accounts for the adequacy, for 85, of the model
theory of [1].

2.3. Trees

A triple (G, K, S), with K a set, GE K, and S a relation defined on K (not
necessarily reflexive) is called a tree (and G is called its origin iff: (1) There is no
HeK s.t. HS G; (2) for every H € K except G, there is a unique H’ s.t. H' S H;
(3) for every HE K, G S*H. If H S H', we call H the predecessor of H'; in terms,
then of S, K is characterized as the field of S, and G as the unique element of K
without a predecessor. So we can speak of a relation S as a tree relation if a G and K
satisfying the previous conditions exist; they will then be determined by S.

An M-m.s. (G, K, R) is called a iree M-m.s. iff there exists a relation § such
that (G, K, S) is a tree and R is the smallest reflexive relation containing S (the
reflexive relation ‘“‘generated by” S). Clearly in this case H, R H, iff H, S H, or
H, = H,. Similarly an S4 (BRouwERsche, S5) m.s. (G, K, R) is a free S4 (BROUWER-
sche, 85) m.s. iff there is a relation S such that (G, K, S) is a tree and R is the
smallest reflexive and transitive (reflexive and symmetric, equivalence) relation
containing S. Note that an S4 m.s., may be, a tree S4-m.s., and yet not be a
tree M-m.s.; and similarly for the other cases.

Clearly every tree m.s. is connected. For by condition 3), for each H€ K, G $* H;
and since S C R, it follows that $* C R*. In S5, every finite or countable connected
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m.s. is a tree S5-m.s. This need not hold for 84, and in fact there are connected
85 model structures (e.g., K = {G, H} and R relates all pairs) which are tree S6-
model structures, but not tree S4-model structures. Nevertheless, when confusion
does not arise, we will leave out reference to a given system when that system is
understood throughout; if we say ‘‘tree m.s.” when we are talking about S4, we
mean “tree S4-m.s.,” and the like.

A model associated with a tree m.s. i8 called a tree model. We will show below
(a stronger result than 2.2) that the semantical theory would lose no generality if
only tree models were admitted (cf. 3.3). Tree model structures admit the obvious
convenient diagramatic representation which inspires their name. Put G at the
origin, connect each H such that G § H directly to G, and so on.

3. Semantic tableaux

The notion of semantic tableau (cf. Betn [5]) developed here is similar to that
of [1], which should be read as background. Again we deal at each stage of the
construction with a system of alternative sets of tableaux; in each set, one tableau
is singled out as the main tableau, while the others are auxiliary. The only difference
between the present situation and that of [1] lies in the fact that each alternative
set of the system is ordered by a reflexive relation R, parallel to the reflexive R
of the model theory, so that each stage of the construction is now a system of ordered
alternative sets. We use letters t,t’, "/, t,, t,, ... for tableaux; if t, Rt,, we say
that t, is “related to” t,, or that t, is “‘auxiliary to” t;. The rules Nl, Nr, and Al
remain a8 in [1], as we shall see. So, in effect, does the rule Ar, but its restatement
is complicated (see below). The rules Y1 and Yr are changed so as to parallel the
new treatment of necessity in the model theory.

Given a formula 4, in order to see whether it is valid we attempt to find a
countermodel to that formula; if no countermodel exists, the formula is valid. If 4
has the form A, A--- A4, .D.B,v- v B,, clearly 4,,..., A, must be frue,
and By,..., B, false, in any countermodel to 4. We represent this situation by

putting 4,, ..., 4, on the left, and B,, ..., B, on the right of the main tableau,
of the construction ; this represents our attempt to find & model in which 4,, ..., 4,,
are true while B,, ..., B, are false. We. then continue the construction by the

following rules (which apply to any tableau, main or auxiliary):

Nl. If ~A4 appears in the left column of a tableau, put 4 in the right column of
that tableau.

Nr. If ~A4 appears in the right column of a tableau, put 4 in the left column
of that tableau.

Al. If A A B appears in the left column of a tableau, put 4 and B in the left co-
lumn of that tableau.

Ar. If A A B appears in the right column of a tableau {, there are two alternatives;
Extend the tableau t either by putting 4 in the right column or by putting B in
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the right column. If the tableau t is in an ordered set ., it is clear that the next
stage we have two allernative sets, depending on which extension of the tableau t
is adopted. Informally speaking, if the original ordered set is diagrammed structur-
ally on a sheet of paper, we copy over the entire diagram twice, in one case putting
in addition 4 in the right column of the tableau t and in the. other case putting B;
the two new sheets correspond to the two new alternative sets. I hope this explana-
tion makes the process clear intuitively; the formal statement is rather messy:
Given a tableau t in an alternative set %, if t has 4 A B on the right, we replace
& by two alternative sets, &, and %,, where &, = & — {t} v {t;} and &, =
& — {t} o {ty}, and t,(ty) is like t except that in addition it contains A(B) on
the right. Since & is ordered by a reflexive relation B, we must define orderings R,
and R, on the two new sets, &, and #,. Informally stated, the ordering R, (R,)
of &, (F,) is precisely the same as that of &, except that t, (1,) replaces t through-
out. We state this condition more formally for .#;: Let ' or t"” be any tableau
of & other than t. Then t' R, t, iff ' Rt (in &), t, R, ' iff t, R t, and t' R, t” iff
t' Rt". Further, to make R, reflexive, we stipulate that t, R t,. These conditions
determine the new ordering R, on .%,. Similarly for &,.

Yl. If 04 appears on the left of a tableau t, then for every tableau t’ such that
tR{', put A on the left of {'.

Yr. If 004 appears on the right of a tableau t, then we start out a new tableau t’, with
A on the right, and such that t Rt

Given any alternative set %, ordered by a relation R, the rules above stipulate
that certain tableaux are to be R-related (cf. in particular Yr and Ar). In addition
to these stipulations, we set requirements corresponding to those for the corre-
sponding model structures. As R in (G, K, R) was reflexive, so R is assumed re-
flexive. Further for S4-tableaux we assume R to be transitive, in BRoOUWERsche
tableaux we assume R to be symmetrie, and in S5-tableaux we assume both. In
M-tableaux, of course, we place no restriction, other than reflexivity, on R. Finally
we assume that R holds only as required by the stipulations preceding and by
the rules Yr and Ar above (i.e., R is to be the smallest relation satisfying these
conditions).

As in [1], we define a tableau as closed iff some formula A appears on both sides
of the tableau, a set of tableaux as closed iff some tableau in it is closed, a system
of tableaux as closed iff each of its alternative sets is closed. Since at each stage
of the construction we have a system of alternative sets, we can finally define a
construction to be clos d iff at some stage of the construction, a closed system of
alternative sets appears.

Finally, we define (terminology of GALLEGHER) a construction for A as one started
out by putting A on the right of the main tableau of the construction.

Two restrictions are placed on the rules, in order to facilitate termination of
the construction. A rule is not to be applied to a formula occurring in a closed
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alternative set; nor is it to be applied if it is “‘superfluous’. (“‘Superfluous’ is defined
by example: Yr is superfluous iff there already exists a tableau t’ s.t. t B t' with 4
os the right of t’; this tableau t’ may, of course, be t itself. Nl is superfluous iff 4
already appears on the right of t, and so on.)

Strictly speaking, it might be more rigorous if we specified a definite order of
priority in which the rules were to be applied. But actually (as is clear from the
semantical results of 3.2), such a restriction of order would be irrelevant to the
question whether a tableau construction closes; the rules are “permutable.” Hence
on the other hand, if it is eonvenient for a particular proof, we can specify any
ordering we desire; this fact is exploited in 5.1.

3.1, Examples

The following is an S4-construction beginning with (1(4 A B) on the left and
O(0Ad A~ OB) on the right:

ad AB)| o(md AaB) oDdA0QB
AAB
A —
B
t, t

The first formula on the left of t, is given; the second is obtained by Y1 (remember
that R is reflexive!), and the third and fourth by Al. Applying Yr on the right,
we start out the tableau t, as shown. The arrow indicates that t, R t,.

At this point the rule /Ar admits of two alternatives. Put these alternatives down
as follows:

0(4AB)| o(md A~ oB) 04 A0B
AAB 04
A4 —
B
t tay
or:
0DAdAAB)| o(cdaoB) oA AOB
AAB oB
A —
B
t1 t22

On each alternative, we recopy the entire diagram, but in one, 114 goes on the
right of t, (which gets relabelled t,,), while in the other [0.B goes on the right of t,
{which gets relabelled t,,). We continue the development of the first alternative
{the other is similar):
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0(AArB)| o(odAoB) AAB | odsraoB (AAB)| 4
ArB A od (4)
A - B - (B)
B
1 tay ts

By Yr again, we introduce t; with 4 on the right. We have t, R 1,, t,, R t, as shown
by the arrow. Since t, R t,; and O0(A4 A B) is on the left of t,, we put 4 A B on the
left of t,;. Also, by the transitivity of the arrow t, R t;, so we put (4 A B) on the
left of t;. But thence by Al, 4 and B go on the left of t;. The construction is closed
since A appears on both sides of t;. This shows that there can be no S4-model @
in which O(4 A B) is true while O0(0A4 A OB) is false. For in such a model, as
is clear by following the construction, to each t; (i =1, 2, 3), there would corre-
spond a world H;(G = H,), with the property that for any C, @(C, H,) = T(F)
if C appears on the left (right) of t;. Since on the alternative we have chosen, 4
appears on both left and right of t;, we would have to have both @ (4, Hy) =T,
and (4, Hg) = F, a contradiction. (On the other alternative, we would have
@ (B, Hg) = T = F.) Note further that if R is not transitive, we would no longer
have closure; in fact the parenthetical formulae would no longer appear in t;.
Thence we would indeed get an M-model @ in which @(04 A OB) =T while
@ (0(ad A OB)) =F. The nature of this model @ in (H,, K, R), with H, RH,
and H, R Hy can be “read off” (partially) from the tableaux. We look at those
places where atomic formulae occur on the left or right. Since A and B are on the
left of t, and ty;, we have @ (4, H,) = P(B,H,) = P4, Hy) =D (B, Hy)) =T;
while on the other hand, since 4 is on the right of t;, @ (4, H;) = F. B appears
on neither side of ty; this shows @ (B, H;) may be assigned arbitrarily. The reader
can check that, no matter which value we give to @ (B, H,), we have

D(0(AAB),H) =T and @(o(ndAr0B),H,)=F.

Further, one notes that the tableau construction would not be altered if the arrow
were read as symmetric; so the model would still work if we stipulated in addition
that H, R H, and H; R H,. Hence it follows we have a BRouwzrRsche model with
the stated properties. The upshot of this discussion is: O0(4 A B) D O (04 A OB)
is valid in S4, but not in M and the BRoUWERsche system.

As an exercise, let the reader consider the following S5-construction, beginning
with ~0.4 on the right and 1~04 on the left:

~gd | o~0od od | ~o4d
Aa 04 A
ty
AN A|A
N ‘
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Since A appears on both the left and right of t;, the construction is closed. Notice
that we required symmetry of R to put 4 on the left of t,, while symmetry and
transitivity were required to put A4 on the left of {;. Hence neither the BRoUwWERsche
nor the S4-constructions would be closed, and in the S4-construction 4 would not
appear on the left of t,. This shows that in S5, but in none of the other systems
we have considered, ~ 004 OO ~ 04 is valid.

3.2. Equivalence of tableaux to models

This section shows that a construction for 4 is closed if and only if 4 is valid.
for each of the four systems we are considering (or indeed for any other systems
in which precisely the same restrietions are put on R for both tableaux and models).
The theorem reduces to two lemmas, similar to the first two lemmas of [1].

Lemma 1. If the construction for A is closed, A is valid.

Proof. Assume for reductio ad absurdum that A4 is not valid. Then there exists
a model @ in a model structure (G, K, R) such that & (4, G) = F. Now we shall
show, by induction on %, that for each n, at the nth stage of the construction,
there is an alternative set . of the construction and a map «, mapping tableaux
of & into elements of K, with the following property : If t is a tableau of &, H = «(t),
and B is any formula occurring on the left (right) of t, then @ (B, H) = T(F). Further-
more, if t; and ty are in &, H; = «(t,) and Hy = x(t,), then t, R t, implies H, R H,.

To carry out the induction, notice that it is obvious for n = 1. Here we have
only one tableau t with 4 on the right; and if we setx(t) = G, we have @ (4, G) = F,
as required. Assume the result proved for the nth stage; then there is an alternative
set ¥ of the nth stage, and a map «, with the required properties.

Let us attempt now to extend the result to the (n + 1)th stage. The (n» 4 1)th
stage must be obtained from the nth by one of the rules, which is applied to some
tableau of some alternative set &' of the system at this stage. Now if &' ++ &,
then & remains unchanged at the (n 4+ 1)th stage and the induction step has been
verified trivially. So let us assume that &' = %, so that the rule is applied to
some tableau t of &. It the rule is Al, then B A C appears on the left of t, and by
hypothesis, for H=u«{t), we have @ (BAC,H)=T. Hence D(B, H)=
=@ (C, H) =T, so when Al instructs us to put both B and C on the left column
of t, it preserves the required properties of &. We say that this fact ‘“‘validates”
Al Similarly we can validate N1 and Nr. If the rule applied is Ar, then BAC
appears on the right of t, so by hypothesis @ (B A C, H) = F. Hence either
D(B,H)=F or ®(C,H) =F. Now Ar correctly instructs us to consider these
two possibilities; it has us replace the tableau t of & by either of two alternative
tableaux, t, and t,, both like t except that in addition t, contains 4 and t, con-
tains B on the right, yielding two new alternative sets &, and &,. If @ (B, H) = F,
the set &, will satisfy all requirements; otherwise, @ (C, H) = F, and &, satisfies
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all requirements. 1f the rule Yr is applied to a tableau t with 0 B on the right,
then by hypothesis @ (O.B, H) = F. Yr instructs us to introduce a tableau t’, with
t Rt and B on the right of t’. But since @{(O B, H) = F, by definition there exists
H’ such that H R H’, and @ (4, H’) = F; then in the (n + 1)th stage we can extend
& by «(t') = H’, and the extended « will satisfy all requirements. Finally, for YI,
if OB appears on the left of t, then at the (n + 1)th stage we are to put B on the
left of cach tableau t’ such that t B t'. Correspondingly in the model @, we have
by hypothesis of the induction that @ (0B, H) = T; hence, for every H' s.t.
HRH, we have @ (B, H') = T. Now by hypothesis of the induction, if t B/,
and x(t') = H’, we have H R H’, and hence @ (B, H’) = T. So when we put B
on the left of t' in the (n + 1)th stage, the requirements on x are still satisfied.
Finally, in addition to the rules, the stipulations on R (reflexivity, transitivity,
ete.) can lead us to assert, for certain pairs tableaux t and t’, that t B t'; we need
to verify that correspondingly H R H'(H = «(t), H" = «(t’})). This verification is
immediate, since the stipulations on the relation B between tableaux are the same
as the restrictions on the relation R of the m.s. (G, K, R).

So the italicized assertion has been verified. Now since the construction is closed,
there is a stage in which every alternative set contains a tableau with some formula
on both left and right. By the italicized assertion, this stage contains a set & and
a map « related to the m.s. (G, K, R) and to the model @ in the manner described
by the italicized property. Now % contains a tableau t with a formula B on both
left and right. Hence if H =« (t), since B occurs on both the left and right of t,
we have @(B,H) =T = F, a contradiction. So the reductio is complete. Q.E.D.

Lemma 2. If the construction for 4 is not closed, then A is not valid.

Proof. Suppose the construction for 4 is not closed; then at every stage of the
construction, one of the alternative sets of the stage is not closed. We intend, as
in {1], to deduce from this fact the existence of a countermodel @ to 4 on a m.s.
(G, K, R). This deduction is not guite so straightforward as might appear from
the proof of the corresponding lemma in [1] (Lemma 2); actually the proof in [1]
of that lemma was inadequate. In fact, the assertion in [1], p. 6, that “there exists
a set of tableaux, one of the construction’s alternative sets, which is not closed,”
was quite meaningless; we are guaranteed a non-closed alternative set at every
stage of the construction, but there is no such thing as an “alternative set” for
the whole construction.

Let us then proceed more cautiously: We notice that the (» 4 1)th stage of
. construction is obtained from the nth by the application of some rule. Let ¥
be an alternative set which is not closed and which us unaffected by the rule; then
it appears unchanged in the (n 4- 1)th stage, and we say that the set % of the
(n 4- 1)th stage is an tmmediate descendant of the set & of the nth stage. On the
other hand, if a rule is applied to % in the nth stage, & is transformed by the rule
intoo a set %’ (or, if the rule is Ar, into two alternative sets %’ and .%#’’}; then
the set %’ (or sets &' and %'’) of the (n 4 1)th stage is (are) called an ( ) imme-
diate descendant(s) of & in the nth stage. Similarly, speak of a tableau t’ in the
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(7 + 1)th stage as an “immediate descendant” of a non-closed tableau t in the
nth stage, under either of the following conditions: a) t is unchanged by the rule
applied to obtain the (n + 1)th stage from the nth, and t' is the same as t; or b)
t is transformed by the rule in question into t’, or (in the case of Ar) into two ta-
bleaux, one of which is t’. Both for tableaux and for alternative sets, we shall use
the term ‘‘descendant” as the ancestral of the relation “immediate descendant’.

Notice that, in a construction for 4, we begin with only one alternative set.
If then we diagram the relation ‘‘immediate descendant” (between alternative sets),
we get a natural tree structure; and in fact this relation (more strictly, its converse)
is easily verified to be a tree relation in the sense of 2.3. We notice that, if an
alternative set % is closed, it has no immediate descendants, since no further rules are
applied to it'); hence the tree corresponding to a closed construction is finite. If
a construetion is not closed, the tree it may be finite or infinite. Suppose it is
finite; then clearly, the construction has only finitely many stages. Since the con-
struction is not closed, the terminal stage of the construetion contains at least one
alternative set which is not closed. We choose such an alternative set, and calt
it &,

Now in this finite case, it is easy to define a countermodel to 4. Let (G, K, R)
be a model structure in which K is the alternative ordered set %,, R is the relation B
which orders &, and G is the main tableau of #,. Define a model @ (P, H) (P ato-
mic, H € K), by @ (P, H) == T iff P appears on the left side of H (remember, K = &,
a set of tableaux!); otherwise, @ (P, H} = F. Now we show, by induction on the
number of symbols in a formula B8, that if B appears on the left (right) of
H, @ (B, H) = T(F). For atomic B, appearing on the left, this is a matter of defi-
nition. If B appears on the right, and is atomic, we notice that since the construc-
tion is not closed B cannot appear on the left, and hence @(B,H) =F. If BA C
appears on the left of H, by Al (and the fact that the construction has terminated
the stage containing %,, so all the rules of the construction have been applied),
both B and C' must appear on the left of H; hence if we assume the hypo-
thesis of the induction, @(B, H) = @ (C, H) =T, by definition it follows that
@ (B AC,H) =T. Similarly if B A € occurs on the right of H, either B or C does,
say B; then by the inductive hypothesis, @ (B, H) = F, and hence @ (B A C, H) = F,
as required. The treatment of negation is similar. If 0 B appears on the left of H,
then by Yl (and the fact that the construction has terminated), B appears on the
left of every tableau H' of K s.t. H R H'. Hence by the inductive hypothesis, for
all H s.t. HRH’, we have ¢ (B, H') = T; so, by definition, ® (0B, H)=T.
If OB is on the right, Yr guarantees an H’ with B on the right, and H R H’; by
the inductive hypothesis, (B, H') = F, so @ (0 B, H) = F, and the induction is
complete. Now we need only observe that A4 occurs on the right of G to obtain

1) More explicitly, we notice that the definitions already excluded the possibility that a closed
set (tableau) should have an immediate descendant; and the fact that no rule is applied tu such
a set (tableau) justifies this procedure. A non-closed set (tableau) to which no rules are applied
at a stage has an immediate descendant at the next stage; namely, itself.
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the conclusion that @ {4, G) = F, i.e., that @ is a countermodel to A. This com-
pletes the finite case.

On the other hand, if the construction is infinite and hence not closed, we need
to apply Konia’s Unendlichkeitslemma to the corresponding tree. According to this
lemma, the tree, being infinite, must contain an infinite path; so, corresponding
to the path, we get an infinite sequence &;, %,,... of non-closed alternative
sets, each of which is an immediate descendant of its predecessor in the sequence.
(Here &, corresponds to the first stage of the construction, &, to the second, ete.)
Call this infinite sequence «. Notice that any t of ., possesses a unique immediate
descendant t' in &, ;. If t is a tableau of %, which is not the immediate des-
cendant of any tableau of &, i, then either n =1 or t was introduced into %,
by Yr; in either case, we call { an initial tableau of x. A sequence of tableaux, whose
first term is an initial tableau of x, say a tableau of &, such that each term after
the first is an immediate descendant, in the sequence o, of its predecessor, is called
a pseudo-tableauw of x. The (unique) pseudo-tableau of x whose first term is the
tableau which started out the construction (with A on the right) is called the main
pseudo-tableaw of x. A pseudo-tableau can contain at most one term which is a
tableau of #,,; if it contains one, we say that it has a representative in &,,. If T,
and 7, are two pseudo-tableaux of «, we say that 7, ¢ 7, iff there exists an #,,,
with representatives t, and t, of 7; and 7, in &,,, such that t, B t,. Clearly, since B
is reflexive, and since every pseudo-tableau contains a representative in some
Fm, 0 is reflexive also. Notice further that if m > » and 7 is a pseudo-tableau with
a representative in %,, T has a representative in %, also. Using this fact, it is
easy to see that if R is transitive (symmetric), g is transitive (symmetric) also.

Given a pseudo-tableau z: t, t’,t”, ..., define a formula B as occurring on the
left (right) of 7 iff it occurs on the left (right) of some tableau which occurs as a
term of the sequence . We now see that pseudo-tableaux behave like tableaux.
Is fact, if B A O occurs on the left of 7, so do B and C, and if B A C occurs on the
right of 7, either B or C' must occur on the right. For if B A { occurs on the left
of 7, it occurs on the left of some tableau t of the sequence 7, and hence occurs
on the left of all tableaux succeeding t. At some point in the sequence a rule Al
was applied to a tableau t’ containing B A C on the left, so that in the immediately
succeeding tableau t'’ B and € both appear on the left of . Hence, by definition,
B and C appear on the left of . The proof that 7 has similar properties for Ar, Ni,
Nr goes just the same way. Further, for Yr, we can prove that if 0 B appears on
the right of 7, there exists a 7’ in & s.t. B occurs on the right of 7/, and 7 ¢ 7. For
let t be a tableau of v with B on the right; then by Yr there exists a tableau t’, the
initial term of some sequence (pseudo-tableau) 7/, such that t Bt' and with B on
the right of t'; then by definition, B appears on the right of 7/, and 7 ¢ v’. Similarly,
if OB occurs on the left of 7, B occurs on the left of any tableau 7’ such that 7 g 7.
Finally, observe that T can contain no formula B on both left and right. For if B
did occur on both sides of the sequence v, we would have terms t and t’ such that
B occurs on the left of t and on the right of t'. Of the pair t{ and t’, one must occur
earlier in the sequence 7; suppose (without loss of generality) that it is t. Then B
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occurs onot only on the left of t, but on the left of t’, so that t', as a tableau, is
closed. But since a closed tableau has no immediate descendants, the infinite se-
quence 7 cannot contain a closed tableau, contrary to what has just been established.
So no formula can appear on both sides of z.

It should by now be evident that the set of all pseudo-tableaux 7 of &, ordered
by the relation g, can replace the set &, which was used in the preceding proof;
the pseudo-tableaux have properties quite similar to the tableaux themselves. In
fact, the countermodel to 4 now reads as follows: We define a m.s. (G, K, R) by
taking G to be the main pseudo-tableau of &, K to be the set of all pseudo-tableaux
7 of «, and R to be the relation g. Further, define the model @ (P, H) as assigning
T to P iff P appears on the left of H; otherwise F. Then, as in the finite case, it is
easy to show that we have a countermodel to A.

3.3. Trees and a reformulation of the rules

Each of the ordered alterrative sets in a given stage of a construction has, in
a natural and obvious fashion, the structure of a tree. In fact, let K be an alter-
native set of some stage of a construction, and let G be the descendant (in K of)
the main tableau. For i, {; € K, we say that t, St, iff at some stage of the con-
struction there is a tableau t| with a formula 04 on the right, and with ty just
introduced by Yr at this stage with 4 on the right, and such that t, and t, are
descendants of t; and té, respectively. It is easily verified that (G, K, 8) is a tree.
Further, we notice that the conditions we have imposed on the relation B can now
be restated thus: R is to be the smallest relation between tableaux that contains S
and satisfies the appropriate reflexivity, transitivity, and symmetry conditions.
This, in turn, is precisely to say that (G, K, R) is a tree m.s. (of the appropriate
modal system) generated by the tree (G, K, S). Now in the preceding section, it
was shown that if K js a non-closed alternative set of the terminal stage of a (finite)
construction for 4, a countermodel to 4 can be associated with the m.s. (G, K, R)
(G = main tableau of K, R = ordering relation R). The present considerations
show that this is a tree model. Similar considerations (left to the reader) show that
the models given in 3.2 for non-terminating constructions (in terms of pseudo-
tableaux), are tree models also.

These considerations suggest that the rules, which we have stated in terms of R,
could instead be stated in terms of the basic tree relation § defined in the pre-
ceeding paragraph (letting R drop out of the picture altogether). This is so. In a
construction in terms of 8, the rules N1, Nr, Al are unaltered. Ar is unaltered except
that:

(1) “R” is replaced by “S’’ throughout (and “R,” by “8,”, “R,” by “8;");

(2) the italicized condition, included to ensure reflexivity, is dropped. (The rela-
tion 8, of course, is not reflexive.)

Yr also has its original form, except that “R” is replaced by “S”. Yl gets the
‘brunt of the alterations. Since the relation S is not reflexive, and is neither transitive
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nor symmetric even if R is, we must put in substitutes for these conditions on R
into Y1. Consider first M, where R is only reflexive. This corresponds to the fact
that if 04 is true in a world, so is 4. We put this into the Y1 of M thus:

Yl. Let 04 appear on the left of t;. Then put 4 on the left of t, and of any tableaux
ty such that t, St,.

In the previous formulation, it was superfluous to require that 4 be put on the
left of t,, since R was reflexive. This holds no longer. For S4, we need further to
obtain a transitivity surrogate. This could be handled by replacing “S* by “S*”
in the rule Yl as it was just previously stated; but we prefer a different procedure.
It is based on the fact, easily verified for S4 models @, that if ®(04, H)=T
and HR H’, then @{(04d, H') = T. So we stipulate:

YLl If 04 appears on the left of a tableau t,, put 4 on the left of t, and put A4
on the left of any tableau t, such that t; St,.

Notice that, by a further application of Yl, since 04 goes on the left of t,, so
does A. Also if later a tableau t; is introduced with t, S t3, since (14 appears on
the left of t,, Y1 requires us to put 04 on the left of {3. So, clearly, we have the
effect of transitivity.l)

The revised Y1 for the BRouwERsche system follows:

Y1l Let 04 appear on the left of t,. Then: (1) put 4 on the left of t;; (2) put 4
on the left of every tableau t, such that t, S t,; (3) put 4 on the left of the (unique)
tableau t; such that t; St;, if such a tableau exists.

For an S5 construction, the rules Yl for S4 and the BrRouwERsche system are
combined.

Constructions in terms of S have the following useful property: if we call ta-
bleaux t, and t, ‘“contiguous” if t, S t, or t, S t;, then a rule applied to a tableau {
can affect at most t and tableaux contiguous to t.

The present “S-formulation” of the rules will be exploited in section 4; its equi-
valence with the previous ‘“R-formulation” is clear, so a detailed proof (if any is
desired) is left to the reader. S-formulations are solely a matter of convenience,
compared with the more basic R-formulation; if we had so desired, we could have
based all proofs on R-formulations. For S5 tableaux, yet another way of formulat-
ing the rules is given in [1].

1) Query: could an analogous device be used to get rid of symmetry? HINTIKKA, in his ori-
ginal formulation of S5, proposed the condition stated for S4, plus in essence the following
additional clause: If (A is on the right of {, and t S ¢/, then put 0O A4 on the right of ". On
this rule, the construction for ~ A4 D 0O ~ O4 is closed. But the construction for the Brou-
wEeRsche axiom, or for ~ 4D O ~ O4, is not closed, so the conjectured formulation of S5
fails. In faot, this formulation lacks a GENTZEN Hauptsatz. On the other hand, the new formu-
lation of S4 comes {replacing GENTZEN sequents by tableaux) from CurryY [10]; and the lack
of any analogous formulation for S5 corresponds to the lack of a simple sequenzen formulation
with Hauptsatz of S5.

6 Ztschr. f. math. Logik
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4. Completeness theorem
4.1. Consistency property

We need to verify that every provable formula of (M, 84, S5, the BRouwERsche
system) is valid in the appropriate model theory. In every case this is an easy me-
chanical task, especially if it is carried out with the aid of tableaux; we need only
verify that every axiom is valid for the appropriate model theory, and that the
rules preserve validity.

One remark is in order. It is easy to show that R1 preserves validity; for if
OA,H)=T,D(4 D B, H) =T, then by the valuation rules for “2”, ®(B,H) =T
also. But it is by no means easy to give a proof, without using the results of 3.2,
that if the construction for A4 is closed and the construction for 4 O B is closed,
so is the construction for .B. Such a proof would involve a tableau analogue of the
GeEnTzEN Hauptsatz. This Hauptsatz would take the form: Let a tableau con-
struction be given, and let t be a tableau occurring in the nth stage of the con-
struction, and let us be given two new ‘“‘pseudo-constructions,” in which 4 is added,
at the nth stage to the left and right of t, respectively (and the rules are applied
to A4 later on). The GeNTzZEN Hauptsatz asserts that if the two ““pseudo-construc-
tions” are closed, so is the original. This Hauptsatz is easily proved by model-
theoretic methods, once we invoke 3.2 to assure ourselves of the equivalence of
tableaux to models; but if we wish to avoid this theory, we can use a GENTZEN-
like induction. In the case of quantified modality, this would allow us to prove
constructively that the construction for 4 is closed iff 4 is provable; while the
semantical proof of this result would be non-constructive. The present semantical
proofs, in the domain of the propositional calculus, are either constructive or can
be made such; so that an inductive proof of the GENTZEN Hauptsatz, though still
interesting, is theoretically unnecessary at this stage. One might appeal, for such
a proof, to the previously published GENTZEN modal systems of Curry [10],
KangEr [12], and Omxnisat and MaTtsvmoto [11].

4.2. Completeness property

We can show that every valid formula A4 is provable by showing that if the con-
struction for 4 is closed, then 4 is provable in the appropriate system. Here we
find it convenient to invoke tableau constructions based on the relation S, rather
than using the relation R.

First, for a tree of tableaux ordered by the relation 8 at a given stage of a con-
struction, we define the rank of a tableau as follows: A tableau t has rank 0 in the
tree if there is no tableau t’ s.t. { § . Otherwise, let t,, ..., t, be all the tableaux
t; such that t St;. Then we definc Rank(t) = Max {Rank(t;}} + 1. It is easily
verified that, for any finite tree of tableaux, (such as occurs in the alternative sets
of a stage of a construction), a unique rank is defined for each tableau of the tree.
(The tableaux of rank 0 are the endpoints of the tree; then work backwards by
induetion.)
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Define the associated formula of a tableau t at a stage to be A; A~ A4, A
A~Bj A+ A~B,, where 4,,..., 4,, are the formulae occurring on the left
of t at the given stage and B, ..., B, are the formulae occurring on the right
of t at that stage.

Further, define the characteristic formula of a tableau t at a given stage by in-
duction on the rank of t: If t has rank 0, the charakteristic formula is the associated
formula. If Rank(t) >0, let t,, ..., t, be all the tableaux t; such that t St;. For
each t;, Rank(t;) << Rank(t), so by hypothesis, the characteristic formula of the
t; have been defined already; let B; be the characteristic formula of t;. Further,
let A be the associated formula of t. Then the characteristic formula of t is defined
as AANOByAOByA - OB,.

By the characteristic formula of a tree (ordered set) of tableaux, we mean the
characteristic formula of the main tableau!) of the set.

Example:

5, G

4
A 52

Here each node represents a tableau, with the associated formula of the tableau
indicated at the node. B,, C;, and C, are associated formulae of tableaux of rank 0;
B, is the associated formula of a tableau of rank 1; and 4 is the associated formula
of the main tableau, which is of rank 2. The characteristic formula of the tree is
AAOB AOCAOT) AOB,.

Let D,, ..., D, be the characteristic formulae of the alternative sets of a system
of sets at a stage. Then the characteristic formula of the system is defined as
Dyv---vD,.

Lemma. If A, is the characteristic formula of the initial stage of a construction, and
B, is the characteristic formula of any stage, then |-A, > B,.

Proof. To prove the lemma, it suffices to show that for any m the character-
istic formula of the mth stage implies the characteristic formula of the (m 4- 1)th
stage. But the characteristic formula of the mth stage in general has the form
Dyv--+vDjv---vD,, where the D; are characteristic formulae of alter-
native sets. The characteristic formula of the (m 4 1)th stage will be either

1) We extend the term ‘‘main tableau” to apply to any tree of tableaux in the following
manner: In any such tree, the main tableau is the origin of the tree. Note that in any alternative
set the at any stage of a construction, the “main tableau” (origin) of the set is the (unique)
descendant in that set of the original main tableau which started out the construction. In short,
if Ar is applied to a tableau t, then if t is auxiliary, the resulting tableaux t, and t, are auxiliary
tableaux of two alternative sets; otherwise they are main tableaux of two alternative sets.
And any other rule applied to a main (auxiliary) tableau leaves it main (auxiliary).

8*
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Dyv---vDjv---vDyorDv---vD;vD;v---vD,, where the rule which
obtains the (m -+ 1)th stage from the mth operates solely on the alternative set
whose characteristic formula is D,. Tf this rule is not Ar, it will change the alter-
native set so that the characteristic formula be comes D;-; but if it is Ar, the alter-
native set in question will “split”’ into two alternative sets, with respective charac-
teristic formulae D; and D; . It clearly suffices, in order to prove that the charac-
teristic formula of the mth stage implies the characteristic formula of the (m + 1)th,
to show that D; D Dj or D; D (D;, v D; ), as the case may be. In other words, when a
rule is applied to obtain the (m 4 1)th stage from the mth, we need only consider
the characteristic formula of the set to which the rule is applied. Let the formula
D; have the form

B/\O(Ol/\O(E]/\<>("')))/\0(02/\Q(E2A<>("')))-

Now let X and Y be formulae such that X D Y is provable. Then by R2, so
is - 0O(X D> Y). But in all the modal systems we have considered, (which all con-
tain M), ~O(X2Y).2.¢X2CY,s0 we have = OX 3 ¢Y; we also know that
F-XDY implies HXAZD. YAZ.

These two facts makes possible a great simplification of the proof that - D; > D}
(or = D; > D; v D;); namely we need only consider, in general, associated formulae
of tableaux to which the rule we use actually applies. Suppose, for example, the
rule transforms the formula C; into C; and affects no other part of Dy (i.e., D]f
is obtained from D; by replacing O, by C; and leaving the rest unchanged.). Then
if we can show C; D}, it follows that

FOAOEACL.NDCASE A ..,
and hence, attaching the possibility signs, that
F OO AOE NS NIC(CLASELAG(..)).

Now, finally, we can attach the other two conjuncts (B and (C; A O (Hy A S 2))),
thus obtaining D; D Dj. Similarly, in every ease where a rule is applied to obtain
the (m - 1)th stage from the mth, we can work with only part of the ‘“nested”
characteristic formula D; in order to obtain D, D Dj. Bearing these observations
in mind, we break the proof down into cases, depending on the rule applied to
obtain the (m + 1)th stage from the mth (I would advise the reader to compare
this proof with the analogous lemma in [1]):

Case N1 Justified by - ~4 D ~4.
Case Nr. Justified by - ~~A4 2 4.
Case Al. Justified by 4 ABD>A A B,

Case Ar. A somewhat messy case, although it is conceptually quite clear. We
must prove D; D D; v D; . Now the rule Ar applies to some formula 4 A B on
the right of some tableau; therefore ~ (A4 A .B) oceurs as a conjunct of the associated
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formula of the tableau, so that ~(4 A B) occurs as a conjunct in the charaeteristic
formula of the tableau. So let £ A ~(A4 A B) be the characteristic formula of the
tableau t in which 4 A B appears on the right; then we certainly have

EA~AAB):D:EAN~AANB)A~AV.EAN~(AAB)Ar ~B,

If the tableau containing 4 A B on the right is the main tableau, this is the desired
result - D; D D; v D;, since the characteristic formula of the main tableau of a set
is the characteristic formula of the whole set. But in general we shall not be g0
fortunate; the tableau in question is merely auxiliary. Well, then we first
observe that

OEAN~AAB):D2:OEAN~AANB)A ~4A.v. E A ~(AAB)Ar ~B),

and that since - O(Xv ¥) 2. 0X v Y, we obtain
FOMEA~AAB)DOEAN~AABYA ~AYV O(E A ~(A AB) A ~B).

Now if ' is the (uniquely determined) predecessor of t (the tableau t' s.t. t' S1),
then the characteristic formula of t' has the form X A &(E A ~(4 A B)), where X
is the characteristic formula {’ would have if t were removed from the tree. Using

€E ., M

the previous results and the distributive law for “A> over “v’’, we get easily

FXAOCEAN~AAB):D:XAOMEAN~AAB)A ~A4).v.
XAO(EA~(AAB)A ~B).

If t’ is the main tableau, we are done; otherwise we continue in the same meanner.
Eventually, after sufficient labor (using each time the distributive laws O (X v Y) >
D0XvAY and (X v Y)AZ:D:XAZ.v.Y AZ), we are driven back along the
branch leading to t until we finally reach the main tableau of the tree, and obtain
the desired result.

Case Y1. The rule is applied to a tableau t with g4 on the left, and with cha-
racteristic formula 04 A X A OE; A OFy A . .., where the E; are the characteristic
formulae of tableaux t; with t8t;, and 04 A X is the associated formula of {.

First assume that we are dealing with a construction, based on S, of M-tableaux.
In this case, we need only justify putting 4 on the left of t and of all the t; such
that t S t;; the characteristic formula of ¢ after this is done becomes 4 A 14 A X A
AO(EyAAYAO(Eyn A) ... But clearly this can be obtained from the old cha-
racteristic formula, using theorems - 04 D 4, and (D4 AOE)DO(E A A). If
we are dealing with an S4-construction, we must justify further putting 04 on
the left of each t; such that t S t;; but this follows, analogously, from — 04 A CE .D.
D. O (E A O4), which is easily proved in S4. If we are dealing with a BRouwERsche
construction, we must justify, in addition to what was done in M, putting 4 on the
left of every tableau t’ such that t' S t. In fact, such a tableau t’, if it exists, is unique,
and its characteristic formula has the form Y A O(DA A X A OB, A OBy A .. L).



86 SAUL A. KRIPEE

‘We must show that the formula implies the new characteristic formula of t' at
the (m -+ 1)th stage, viz.:

ANYACUANTOANZXAOE AADANOEZAA) AL,

The only novelty beyond M is the occurrence of A which begins the formula. It
can be obtained as follows: clearly - Y AO(OAAXACE, A...) DO O4; but
by the BRouwERsche axiom, or rather its dual, easily provable in the Brouwzarsche
system, we have - & 04 D A, which yields the desired result. The proof for S5
follows readily from the preceding, since the S5 procedure is just the combination
of those for 84 and the BrouwERsche system, and all the preceding proofs go
through in S5. (An alternative method, for S5, is of course that of [1].)

Case Yr. If 04 appears on the right of a tableau t, the tableau t has charac-
teristio formula X A ~ 0A. We are instructed to start out a new tableau t' with
A on the right; the characteristic formula of t becomes X A ~ 04 A O ~A4. But
olearly, since - ~ 04 DO ~A, wealsohave - X A ~04ADX A~DO4dAO~A4.
(Remark: of course, we may be required, by Y], to put some formulae on the left
of t', immediately afterward, but this has been justified under case YL)

The proof is complete.

Theorem. If A is valid (¢ M, S4, S5, BROUWERSCHRE), it s provable (in the appro-
priate system).

Proof. We will prove that if the construction for A4 is closed, then A4 is provable.
Now since the construction for A is closed, there is a stage, say the mth, when
every alternative set is olosed; call the charaoteristic formula of this stage
Dyv:++-vD,. Let D; be any disjunct; it is the characteristic formula of an alter-
native set ;. By hypothesis, &; contains a closed tableau, whose associated
formula is X A C A ~C, where C is the formula oceurring on both left and
right; this formula is clearly refutable in all systems considered. In fact, so is
<& (X A C A ~C), and hence 8o is any formula of the form ¥ A O(X A C A ~0),
oreven & (Y A O (X A C A ~C)). Inshort, using the fact that, if - ~X, - ~(Y A X)
and even |- ~O (Y A X) (the latter since by R2, - g ~(¥ A X)), we can obtain
- ~D;. Hence, since j was arbitrary, - ~(D, v - - - v D,;), Finally, by the lemma,
the characteristic formula of the first stage of the construction implies that of the
mth. But here the characteristic formula of the first stage is just ~4. So the lemma
tells us that - ~4 2D, v ::+-v D,. Since — ~(D, v -++v D,), we obtain - 4.
Q.E.D.

Remark. The theorem showed, in a purely syntactical constructive manner (with-
out reference to models), that if the construction for 4 is elosed, 4 is provable in
the appropriate formal system. The development of the characteristic formulae of
successive stages is, in effect, & HERBRAND development from the characteristic
formula of the initial stage; and we could, if we wished, base a proof procedure
for modal logic solely on the development of characteristic formulae.
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5. Applications
5.1. Decidability

Although in the preceding we took account of the possibility of infinite tableau
constructions, it is clear that we can show that the systems are decidable (in,
say, a construction of the § type) if we can show that the procedure always ter-
minates, either in a closed system of sets or in a finite countermodel to the for-
mula whose validity is being tested. In fact, for M and BRouwERgsche constructions
of the S type, we can argue as follows: Familiarly, the modal degree of a formula 4
is defined inductively thus: An atomic formula has modal degree 0; deg(4 A B) =
= max (deg(4), deg(B)), deg(~A4) = deg(4), and deg(14) = deg(4) 4+ 1. (Thus
the degree is the number of “‘nested” necessity signs in a formula.) Finally, if t
is a tableau (at a given stage of a construction), define deg(t) as the maximum
of the degrees of the formulae occurring in t at that stage.

Using this notion of degree, we show that M and the BRouwERsche system are
decidable. For let 4 be any formula, say first of M; we show, by induction on the
degree of A, that the construction for A terminates. If the degree is 0, then 4 is
a purely truth-functional formula, and the construction obviously terminates.
Suppose the theorem has been proved for degree << m; let A be a formula of degree
m -+ 1. Then the construction for A begins with a main tableau t with 4 on the
right. We apply, before using Yr and introducing new tableaux, all the other rules
(including Y1) within the tableau t. It is easy to see that only finitely many for-
mulae are introduces in this manner, and that these rules are exhausted in a finite
number of steps. Assume we have reached the end of these steps. Then by this time
the tableau t has been in general replaced, on account of applications of Ar, by
various alternative tableaux ft;,...,t, (since Yr has not yet been applied, the
alternative sets at this stage are all one-element sets). Let t' be any one of these;
concentrate on it. Let 0 .B,, ..., OB, be all the formulae of the form 1B appear-
ing on the right of t'. Apply Yr, obtaining various tableaux t; with B; on the right,
and with t' §t;. Now since, O0B is a subformula of A4, deg(DB)< m + 1,
deg(B) < m. Further, if any formula [qC appears on the left of t’, we put C on
the left of t;; but, by the same argument, deg(C) < m. It is clear that no other
rules introduce into t, formulae of degree >>m unless such formulae have already
been introduced ; so we conlude that, at every stage of the construction, deg(t;) <.m.
In fact, in the system M, aside from putting such formulae C on the left of t; and
a formula B; on the right, the tableau t. romains entirely unaffected by the tableau
t thereafter; and all the rules that are applied to or affect the tableau t have already
been applied. So, in M, we can now proceed to continue the construction from each
of the tableaux t; (i +1,...,7). Notice that no tableau related to t; can affect
any tableau related to t;- (7 =k 7); this includes the statement that these tableaux
do not affect each other. Hence, if we concentrate our attention on t;, we note
that the part of the construction continuing outward from t; (i.e., the construction
restricted to the subtree determined by t}) is unaffected by t; and t, and thus pro-
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ceeds exactly as if t; were the main tableau of the construction. Since deg(f) < m,
the inductive hypothesis assures us that this part of the construction terminates
in finitely many steps. Since there are only I tableaux t;, the part of the construc-
tion restricted to the tableau proceeding from { also terminates. But further t’
was an arbitrary element of a finite list of alternative tableaux; so, even if we
consider all of these, we still obtain a construction that terminates in a finite num-
ber of steps.

The preceding reasoning applied to M; but it is extendable to the BROUwWERsche
system. Here again we have t' and I tableaux t; s.t. ' S t;; but in this case, there
is no guarantee that t' will be unaffected by the t;. In fact, if a formula OD appears
on the left of t;, we must put D on the left of . Now, at least initially, when t, is
started out by putting B; on the left (by Yr) and various formulae C; on the right
{by Y1), the argument given above shows that these formulae are of degree = m.
This property is preserved by applications of the rules; every subformula of a for-
mula of degree < m is of degree <Xm. Assume for the moment that QD is a sub-
formula of B; or of one of tke formulae of the form C;; then deg(0O D) < m, hence
deg(D) < m — 1. Now, by applying the rules to D on the left of t’, we may get
a formula O F,, which must therefore be a subformula of D, on the right of t'.1)
When we apply Yr to it, we obtain a tableau t;, (say) started out with E; on the
right. Notice that deg(0 E,) < deg(D) < m — 1, hence deg(#,) = m — 2. Further
if a subformula 0 F of D appears on the left of ', we must put F on the left of every
tableau t” s.t. ' S t”; in particular, on the left of t, ..., t,’ and of tl' +1. Notice,
however, that deg(F)< m — 2, by the same arguments as before. Further, of
course, D need not be the only formula put on the left of t by Y1 at this stage; but
there are only finitely many such, and all have the properties assumed for D. So
we can assume that say p new tableaux 1,4, ..., t;, » have been added, where
ti.;(i=1,...,p) has a formula E; on the right, with deg(E;) < m — 2. Further
new formulae F are added on the left of ti,..., t: and t;+1, ey t,'_,_p, with
deg(F) < m — 2. We can apply the rules to E; and the F’s, perhaps obtaining
some subformula OG on the left of t. (i = 1,...,1 4 p); but here QG is a sub-
formula of E; or an F, hence deg{0 @) < m — 2, so deg(G) < m — 3. So the new
formulae G which we put on the left of t' have degree <<m — 3. Now we argue
as we did before; new tableaux are started out, formulae are put on left and right
of them, but now they all have degree <<m — 4. Since the degrees involved de-
crease by 2 at each stage, this iteration process cannot continue indefinitely. Even-
tually, we shall stop, obtaining a situation where we have a tableau {’, tableaux
t;, R t; with t' S t: (¢=1,...,8), and where at no later stage can the t: affect
t’ or each other. Then we can argue from here precisely as we did for the system M
in the preceding paragraph.

In fact, the argument we have given guarantees a stronger result, both for M
and for the BRouwERsche system: Let 4 be a formula of degree m. Then the con-

1) The introduction of D on the left of t” may also lead to applications of Ar to t/, thus split-
ting t up into several new alternative tableaux. To simplify the present proof, we ignore this
(clearly inessential) possibility.
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struction for A terminates. In fact, it either is closed, and hence A is valid, or it yields
a finite tree countermodel for A, in which each branch of the tree is of length <m.})
Hence every formula is either provable or has a finite tree countermodel. — This fact
is easily proved, by induction on m, using the methods of the preceding paragraphs.

This result does not hold for the system S4. In fact, the preceding arguments
all break down in S4, since Y1l in S4 allows one to transfer (14 rather than just 4,
when (04 occurs on the left. In fact, as K. J. J. HINTIKKA essentially pointed out
to me, the formula ~Q(4 A O ~4 .v. ~4 A OA) is not valid in S4, but it has
no finite tree countermodel. (Try out the tableau procedure for it!) An equivalent
example, which I have used in other connections, is ~ (04 A O ~4). A counter-
example to this would be a necessarily contingent formula. But in a finite tree
model, no formula is evaluated as contingent on the endpoints of the branches of
the tree (in fact on such endpoints, every true formula is necessary). Hence in S4,
there are no mecessarily contingent formulae on finite tree models.

Thus in S4 we need another argument to show the decidability. In fact, a rather
traditional GENTZEN subformula argument will suffice. We will show that, although
the construction can be infinite, nevertheless there is a certain stage at which the
construction either closes, or terminates in a finite tree countermodel, or it is re-
cognizable that the construction never will close. In fact, given a construction for
a formula A, at every stage of the construction, in each of the tableaux of the alter-
native sets in that stage only subformulae of 4 ean occur. Now the subformulae
of A are finite in number. Further, if we regard a tableau as an ordered pair of
sets of subformulae of A, it is clear that there are only finitely many tableaux
(i.e., if A has n subformulae, there are 2" sets of subformulae, hence 2" pairs of
such sets). Now suppose we are given a construction for 4 which is infinite (and
therefore, not closed). Then, as in the proof of Lemma 2, section 3.2, there exists
an infinite sequence %, %,,... of non-closed alternative sets, each of which
(except &;, which corresponds to the first stage of the construction) is an immediate-
descendant of its predecessor. Since, as was shown above, there are only finitely
many distinet tableaux which can occur in a construction for A4, it follows that
there must be some %; which is saturated; i.e., it has the property that for k > 7,
all the tableaux occurring in &} are equal to tableaux already occurring in ;.
(Here two tableaux are equal iff they contain the same formulae on both left and
right; they need not be, however, identical, since they may have different positions
in the tree structure.) Now suppose the construction is subjected to a modification
defined as follows: We say that a tableau t’ contains a tableau t iff every formula.
appearing on the left (right) of t appears on the left (right) of t'.

Let a tableau { be introduced at the nth stage of a construction by Yr in an alter-
native set . We call t repetitive iff there exists an m <=, and a tableau {’ in a
set &' at the mth stage of the construction, such that ' contains t, and such that
t' still contains t at later stages, as long as no rules are applied to formulae occurring
within { (although t may get additional formulae on the left as a result of Y1 applied

1) A branch with { + 1 points is said to be of length .
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to some other tableau). It is clear that if 1 is repetitive at the nth stage, this fact
can be recognized (using an effective test) at that stage; further it is clear that
the rules subsequently applied to t will merely duplicate (be ‘““mirror images of’)
rules applied to t'. (In particular if a tableau t, is introduced by applying Yr to t,
with t 8 t;, at some stage of the construction a tableaun t, is introduced, containing t,
s.t. t' 8 t;.) Hence, in order to see whether the construction closes, it is unnecessary
to apply rules to t; anything that “happens to” t will be duplicated by something
that happens to t'. Hence we place the following restriction on all constructions:
No rule i3 to be applied to a formula occuring in a repetitive tableau.

The preceding discussion makes it clear that when the constructions are modified
so as to conform to this restriction, they must terminate. For otherwise, as was
shown above, there would be an infinite sequence %;, %, . . . of non-closed alter-
native sets; and this sequence would contain a ‘‘saturated” term ;. But by the
definition of “saturated”, for all k¥ > j every tableau in &} is either the descendant
of some tableau in % or is repetitive. Now there are only finitely many tableaux,
say n in &;; then exactly n of the tableaux in any &} (k > §) are descendants of
tableaux in ;. Further, each of the n tableaux in %; contains only finitely many
formulae; and in fact, in any one tableau t there are only finitely many rules that
can be applied to formulae in t until all formulae are decomposed into atomic com-
ponents. Hence under our new reduction the sequence &;, &, . .. actually termi-
nates at some % (b < §), contrary to the hypothesis that it is infinite. Hence, by
reductio, the construction must be finite. This shows that the decision problem for
S4 is golvable also.

Suppose we are dealing with an S4 construction, which is not closed, for a for-
mula 4. Then it still, however, must terminate; and the last stage of the construc-
tion must contain a non-closed alternative set .. Now .# contains only finitely
many tableaux. We wish to obtain, from the set %, a countermodel to the formula A4,
by the techniques of Lemma 2, section 3.2; but since the rules have not been applied
to the repetitive tableaux of %, the argument of that lemma no longer applies.
This difficulty can be solved by ‘“‘identifying’ each repetitive tableau with & corre-
sponding non-repetitive tableau. To put the matter more exactly: the non-repetitive
tableaux determine equivalence classes of tableaux as follows: every non-repetitive
tableau is assigned to its own equivalence class. A repetitive tableau t is contained
in an earlier tableau t'; this tableau ' may itseli be repetitive, but in this case it
in turn is contained in an earlier tableau {”, etc. Eventually we find a non-repeti-
tive tableau t, containing t; we place t in the equivalence class determined by t,.
(The choice of t, need not be unique; but once it has been made, it places t in &
unique equivalence class.) Then we take the set K to consist of all the equivalence
classes of tableaux thus determined; G is the equivalence class containing the
main tableau of the set. Given two equivalence classes H, and H,, in K, we
say that H, R H; iff there exists tableaux t, and t, in H, and H,, respectively,
with t; B t,. Finally, if P is any propositional variable, and H € K, define @ (P, H) =T
iff there exists a tableau t in the equivalence class H with P on the left of t;
otherwise @ (P, H) = F. Then it is easy to show, by the method of Lemma 2,
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section 3.2, that (G, K, R) is a model structure, and that @ is a countermodel
to the formula A.

It is clear that the preceding paragraph has shown that every formula A of S4
i8 either derivable or has a finite countermodel. This result is weaker than the
corresponding results for M and the BRouwERsche system, since the finite counter-
model need not be a tree model. On the other hand, the proof of Lemma 2, section
8.2, guarantees that non-derivable formula always has a countable iree countermodel.
For some formulae, like ~ 0O(4 A O ~A . v. ~A4 A OA), either the finiteness or
the tree structure must be sacrificed; we need not sacrifice both. In fact (as we
shall illustrate by an example but not prove), the modified version of construction,
which disallows applications of rules to repetitive tableaux, gives us a constructive
method for obtaining denumerable tree countermodels as well as finite counter-
‘models. For example, to find a countermodel to the formula

~OAAO~A v, ~A AOA),

we apply a tableau construction (with the restriction on repetitive tableaux)
which at its last stage has an alternative set of the following form (abbreviating
ANO~A V. ~AACA by X, v X))

O(X,vX,) | ~oO(X,v X, ~A A A
X, vX, | O(X; v Xy) o(X, v Xy
X, - X,vX, - X,vX
A X, X,
O~A OA O~A
t ty ts

1} Here, if we wished, we could imagine “{” replaced by its definition “~ [ ~”. But we
have carried out the procedure as if the rules ZI and Zr, dual to Yl and Yr and essentially
(using the definition of “{”’) derived from them, were assumed:

Z1. If & A appears on the left of a tableau t, start out a tableau t/, with 4 on the left, and t B t'.
Zr. If O A appears on the right of t, put A on the right of every tableau t’ 5.t. t B t’.

One of the beauties of tableau procedures is that independent rules can be given for any
number of connectives so that the connectives are “independent” of each other. Notice that,
if we are using both Y rules and Z rules in the same system, the relations R in both must of
course be the same in order to derive such theorems as ~ [] ~4 20 & A. We could introduce
two relation R and R/, R for the Y rules and R’ for the Z rules, and then ~ (0 ~4 D { 4 would
no longer hold. (In fact, it is easy to introduce & model theory for several 01 operators and seve-
ral & operators, each with its own associated relation R; the different operators can even satisfy
different reduction axioms, corresponding to different properties of these relations.) This fact
has apparently been overlooked in OmNisHr and MaTtsumoro [11]. For both M and S4, their
rules for necessity and possibility work in isolation but not when they are combined; in neither
S84 nor M (as formulated by the combined rules) is ~ [0 ~4 — O A provable. The revised
rules for necessity in S4 (when both nedessity and possibility are primitive) should read:

r,A-rn v Or—A4,0I"
T,04-1 'Dr—04,or

Similarly for ZI and Zr; and similarly for M. (The S5 rules in [11], lacking the Haupisaiz, are
less interesting; cf. footnote 5.)

Yl
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Here the tableau tg is repetitive, being contained in t,. Now we ean use the tableau
diagram to obtain a finite countermodel, as in the preceding paragraph. In this
case, we “‘identify” t, and tg, placing them in a single equivalence class G. Thus
we have a model structure, consisting of a set K with two elements G and H, with
R holding between any ordered pair of elements of K. A model @ is defined on the
model structure (G, K, R) by taking 4 as a propositional variable and stipulating
that @(4,G) =T and @ (4,H) =F. This is clearly a finite countermodel to
~OAAO~A.v. ~4 AOA). On the other hand, it is equally possible to inter-
pret the diagram so that it yields a tree countermodel. Let us take a countable
set K with elements H; indexed on the positive integers. “G” is another name for
H,, and H; RH; iff ¢ < j. On the model structure (G, K, R) we define a model
D by P(4,H)=Tif n is odd, and ®(4,H) = F if n is even, Then @ is a de-
numerable tree countermodel to ~ O(4 A O ~A .v. ~A4 A $A). Further, it is
easy to see how this model was obtained from the diagram. Instead of identifying
t, and tg, we noticed that in a construction without restriction on repetitive ta-
bleaux, the same rules would apply to t, as to t;, thus producing a tableau t, like t,,
which in turn gives rise to a tableau i; like i,, etc. To every such tableau {, we
correspond a world H,,, thus obtaining the countermodel in question.

Analogous arguments yield the result that every non-derivable formula of S5
has a finite countermodel, and that S5 is decidable; essentially this result is already
in [1]. The finite countermodels for S5 are automatically tree countermodels, so
S5 enjoys the strong property of M and the BrRouwzRrsche system that every for-
mula is either derivable or has a finite tree countermodel.

The decision procedures may have seemed onerous from their description, but a
little practice will verify that they are no more tedious than the usual decision
methods for classical propositional logic, and that they are the simplest decision
procedures in the literature for modal logics.

5.2. Matrices, finite and infinite

It is usual in propositional calculus to obtain independence and non-derivability
results by the use of finite many-valued truth tables. Prior, in his [14], has given
us a method of interpreting such matrices in terms of possible worlds. We apply
and extend his method to the present semantical analysis.

Given a model structure (G, K, R), we define a proposition (or perhaps more
accurately, modal value of a proposition), as a mapping whose domain is K and
whose range is the set {T, F}. (Intuitively, a proposition is something that can be
true or false in each world; and, for our present purposes, we identify propositions
that are strictly equivalent, i.e., have the same truth-value in each world. Without
the identification of strictly equivalent propositions, the term ‘“modal value of
a proposition” would be better). Notice that each proposition determines a unique
set of worlds (the set of all worlds mapped into T), and that conversely each set
of worlds determines a proposition (its ‘‘characteristic function’). Thus a proposi-
tion could just as well have been defined simply as a subset of K.
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Now a model is a function @, mapping ordered pairs (P, H) into truth values,
where P is a propositional variable and H € K. For fixed P, the model @ deter-
mines a singulary function A H® (P, H), mapping elements of K into truth-values;
i.e., it determines a proposition. Thus a model can be viewed as a function mapping
formal propositional variables into propositions.

If ¢ and o are propositions (i.e., for H€ K, g(H) and o¢(H) are truth-values),
we define p A ¢ as the proposition such that p Ao(H) =T iff p(H) =a(H)=T;
otherwise g A g(H) = F. Further, ~p is defined by ~p(H) = T iff p(H) = F, other-
wise ~p(H) = F. (More compactly, assuming A and ~ defined on truth-values in
the obvious manner, (g A ¢) (H) = g(H) A o(H), (~g) (H) = ~(g(H)). If we con-
strue g and ¢ alternatively as subsets of K, g A ¢ is the intersection of g and ¢, while
~p is the complement in K of p.) Finally, define Op by (D) (H) =Tif o(H)=T
for all H’ with H R H’; otherwise (00¢) (H) = F. Notice then that if a model @
maps the formulae 4 and B into the propositions ¢ and ¢, then by the previous
definition given for models it maps 4 A B into g A ¢, ~4 into ~p, and 04 into
Oa.

Now if K has finitely many elements, say %, then there are exactly 2" proposi-
tions in the model structure (G, K, R). We can label these by integers 1, 2, .. ., 2",
and set up “many-valued truth tables” for the operations A, ~, and O, (indicating
for each propositions g and ¢ what propositions p A o, ~g,and Ogare). If o(G) =T,
we call p a “designated value.” For example if K = {G, H}, viewing propositions
as subsets of K let 1 = {G, H}, 2 = {G}, 3 = {H}, 4 = empty set. Then 1 and 2
are designated. If R is reflexive and G R H but not H R G, the matrix thus ob-
tained is Group II of [4]; if R relates every ordered pair of elements of K, the result-
ing truth-table is Group III of [4]. In the first case, since R is transitive but not
symmetric, the matrix satisfies S4 but not S5; in the second case, where transitivity
and symmetry hold, the matrix satisfies S5.

Generally, then corresponding to each finite model structure (G, K, R) we get
& finite many-valued matrix which satisfies the appropriate modal system. Further,
this matrix is normal in the sense of CEURCH ({20]. Now in the preceding section
it was shown that every non-derivable formula of each of our modal systems has
a finite countermodel. If we translate this countermodel into a normal matrix for
the modal system, we see that every formula is either derivable or has a non-
designated value in some finite normal matrix satisfying the axioms of the system.
This property has been called the “finite model property” (cf. [21]).

Of course the restriction to finite sets K is inessential to the construction we have
outlined; if K has n elements, finite or infinite, the propositions of (G, K, R) form
.a matrix of 2% elements.

Now consider a countable set K with a tree relation S; the relation S is to be
constructed so that for each H € K, there are denumerably many H'€ Ks.t. H S H’.
‘Then let (G, K, R) be the tree model (for the appropriate modal system) generated
by the relation S. Then it can be shown that (G, K, R) is a “universal” model
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structure in the following sense: any non-derivable formula A4 has a countermaodel
@ in (G, K, R). In fact, for M, S5, and the BRouwERsche system we have shown
that every non-derivable formula has a finite tree countermodel. Let the finite tree
model structure of this countermodel be (G’, K/, R’), let S’ be the tree relation
generating it, and let @’ be the countermodel to 4. We define a function y, map-
ping K into K’ (intuitively, “identifying” elements of K with their images in K’)
thus: ¥(G) = G'. If y(H) = H’ has already been defined, let H; (1 ==0,1,2,...)
be the countably many elements of K such that H S H;, and let Hy, ..., H, be
the finitely many elements (n = 0 if there are none) of K’ such that H’' S H;.
Define y(H,) = H’, x(H;) = H; (1< i< ), and y(H;) = H (6 >>n). Then y has
been inductively defined; and we define a countermodel @ to 4 in (G, K, R) by
D (P, H) = &'(P,x(H)). Then @ is & countermodel to 4 if @ is.

A method similar to that outlined in the previous section for obtaining repetitive
countermodels suffices to show that an S4 model structure generated by the tree
of the preceding paragraph is “universal” for S4. (The proof will not be given here.)

Now the set K of the universal model structure is denumerable; and hence it
contains continuously many propositions; so each of the four modal systems has
a characteristic matrix of the cardinality of the continuum. In fact, however, we
need only include in the matrix those propositions used for countermodels. Thus,
e.g., for all systems except 84, we need only consider those propositions which are
of the form g(H) = ¢’ (4 (H)), where o’ is a proposition defined on a finite model
structure, and y is the mapping of the preceding paragraph. Since there are only
denumerably many propositions of this form (and the same fact can be verified
for S4), it follows that each of the systems considered has a denumerable characte-
ristic matrix.

The characteristic matrices, either of the cardinality of the continuum or the
denumerable ones, just defined are all normal. Hence none of the systems we con-
sider can be unreasonable in the sense of Havupin [16], since HALLDER’s paper
shows essentially that no system with his “bad’” property can possess a normal
characteristic matrix.

One additional comment: In {1], an extended notion of ‘two-valued truth-
table”, based on the model-theoretic considerations, was introduced for S5. Essenti-
ally the corresponding notions for M and S4 were given by ANDERSON [13] (except
that the reductions to normal form appear unnecessary).

53. A property of M and S84

As an example of the power of the present semantical techniques, we derive the
following property of M and S4, previously known from algebraic arguments of
McKnsEY-TARsKI [15] and Lemmon [18]: If 0d v O B is dertvable, then either A
or B is derivable (and hence, by R2, either 04 or 0B is derivable). For suppose
neither 4 nor B derivable; then let @ and @’ be countermodels to A and B, defined
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on the model structures (G, K, R) and (G, K/, R’) respectively. Clearly we can
assume that K and K’ are disjoint. Define a model structure (G”, K’’, R""), where
G"¢K,G"¢ K, K'=KouK «{G"}, and for H;, Hy€ K”’, H; R” H, iff either
a) H;, H,€ K and H; RH, or b) H;, H, € K’ and H; R’ H,, or ¢) H; = G”. Then
R’ is reflexive, and is transitive if R and R’ are (using the disjointness of K and K').
(Note that this statement would not hold for symmetry.) So (G”, K", R”) is a
model structure for the appropriate system. Let @' be any model in (G”, K’/, R")
such that @ (P, H) = @ (P, H) for HE K, and @"(P,H) = &'(P, H) if He K"
{Since K and K’ are disjoint, there exist maps @’ satisfying these conditions.)
Now we verify by induction that H € K, @/(C, H} = @(C, H) for every formula C.
For if C is atomic then this is part of the definition of @' If C =D A Eor C = ~D,
the inductive step is easy. If C = O.D, and the statement has been verified for D,
then if @(D,H)=T for all H with HRH', then &(C,H)=T; otherwise
&(C,H) = F. But &(D, H') == &"(D, H’) by hypothesis. If H € K, conditions b)
and ¢) cannot hold (with H = H,, H" = H,), so that H R” H’ if and only if H R H’.
So (C,H)=Tiff @'(C,H)=T,; ie., ®(C,H)= @' (C, H). Q.E.D. Similarly,
if HE K/, @' (C, H) = @'(C, H). Hence in particular, since @ and @’ are counter-
models for A and B, respectively, @”7(4,G)= ®(4,G)=F, ®"(B,G') =
= @'(B,G’) = F. Since G R” G, we have hence @"(0Ad,G)=F; similarly
since G" RG/, @' (0B, G”")=F. Hence @' (04AvOB,G"Y)=F, and @' is a
countermodel to 04 v O.B. So if neither 4 nor B is provable, 04 v OB is not
provable; so the desired result follows.

The result fails for S5 and the BRouwERsche system. In fact, in both systems
the BRouwEersche axiom 4 O O ¢4 holds. Putting OB for 4, we get OB > O OB.
Equivalently O ~Bv O < B is derivable, but clearly neither ~B nor ¢ OB
is derivable.

6. Other systems

Consideration of various non-normal systems is reserved for another paper.
Prior’s Q (cf. [14]), and similarly constructed modifications of the systems considered
in this paper, are better motivated by a consideration of quantification theory,
and hence are reserved for a paper on quantified modal systems. An example of
a system between S4 and S5 is the System S4.3 of [21], obtainable by adding
the scheme G A AOB.D.O(AAOBY v O(BAOA) to S4. Model-theoretically,
this amounts to a requirement on a S4-model-structure (G, K, R) that if H, H' € K,
then either H R H’ or H’ R H. Other systems formed by imposing various require-
ments on R can easily be constructed by consideration of [11], Theorem 3.5.

If we were to drop the condition that R be reflexive, this would be equivalent
to abandoning the modal axiom 04 D> 4. In this way we could obtain systems
of the type required for deontic logic.
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