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SEMANTICAL ANALYSIS O F  MODAL LOGIC I 
NORMAL MODAL PROPOSITIONAL CALCULI 

by SAUL A. KRIPKE in Cambridge, Mass. (U.S.A.) 

The present paper attempts to extend the results of [l], in the domain of the 
propositional calculus, to a class of modal systems called “normal.” This class 
includes M and S4 as well as S 5 ;  we will also treat a new system, the “BROUWER- 
sche” system. In  sequels to the present paper, we intend to extend the treatment 
to non-normal modal propositional calculi (see [7] for an enumeration of the systems 
included), and to quantificational and identity extensions of all these propositional 
systems of modal logic (see again [7] for details; but readers of [I] will have an 
inkling of how quantificational extensions are to be carried out). Thorough acqua- 
intance with [I] is presupposed; and many of the proofs in this paper (which, by 
reason of the many systems here treated, is occasionally somewhat compressed), 
are better comprehended by a comparison with the corresponding proofs in [l]. 

1. Normal modal propositional calculi 

A modal propositional calculus (MPC) is given by a denumerably infinite list of 
propositional variables P, Q ,  R , . . . , which can be combined, using the connectives 
A ,  -, o, to form formulae (wffs) as in [I]. (The propositional variables are thus 
the atomic formulae of the systems. Below we will use the letters P,  Q ,  R ,  . . . , as 
metavariables ranging over atomic formulae; A ,  €3, C ,  . . ., as metavariables over 
arbitrary formulae.) A modal propositional calculus is called normal iff i t  contains 
as theorems the axiom schemes A1 and A 3  of [l], and contains as admissible (deri- 
vable) rules the two rules of inference R1 and R2 of [I]: 

A l .  o A l A  
A3. o ( A  > B ) . 3 .  oil  3 o B  
R1. If F A  and I - A I B ,  k t h e n  B 
R2. If F A ,  then I- o A .  

(The non-normal systems to be considered in another paper will fail to satisfy R2; 
in the paper on quantificational extensions we will also consider systems that are 
non-normal in the sense that they are modified in the direction of h I O R ’ e  Q.) 

b* 
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The system M (T) of FEYS- VON WRIUHT (cf. [3], [19]), is given by the axioms 
A1 and A3, and the rules R1 and R2. The system 54 is obtained by adding to  M 
A4. I - o A I o o A  

as an axiom scheme. The BRouwERsche axiom (cf. [4], p. 497) is the scheme: 

A 3 o 0 A .  

‘The BRouwERsche system is obtained by adding the BRouwEnsche axiom to M. 
Pinally, 55 is defined as in [l]; i,e., it is M plus the scheme: 

A2. - u A I R  - u A .  

It is known (see the appendix to [4]) that S4 plus the BRouwERsche axiom is 
equivalent to S 5 .  The present paper will make it clear that this theorem is essenti- 
ally equivalent to one which is better known and simpler: A reflexive, transitive, 
and symmetric relation partitions its field into disjoint equivalence classes (cf. 2.1, 
next to last remark; also 2.2). 

2. Normal models 

A normal model structure (n. m. s.) is an ordered triple (G , K, R),  where K is 
a non-empty set, G E K, and R is a reflexive relation defined on K. If R is trans- 
itive, we call the n.m.9. an S4  model structure; if % is symmetric, we call i t  a 
BRouwERschc model structure; if R is an equivalence relation, we call it an s5 
model structure. A normal model structure is also called an M model structure. In 
this paper the adjective “normal” will often be omitted, and we will speak simply 
of a “model structure” (m.8.). 

An M (84, 55,  BRouwEmche) model for a wff A of M (s4, 55,  the BRouwERsche 
system) is a binary function 0 (P, H) associated with a given M (54, 55, BROUWER- 
sche) model structure ( G ,  K, R) .  The first variable ‘P’ ranges over atomic sub- 
formulae of A ,  while the second variable ‘H’ ranges over the members of K. The 
range of 0 is the set {T, F}; i.e., 0 ( P ,  H) = T or @(P, H) = F. 

Now given a model @ associated with a mas. (G,  K ,  R), we will def ine  for any 
aubformula B of A ,  and any H E K, a value @ ( B ,  H) (which will be T or F); i . e . ,  
we define a unique extension of @ in which the first argument ranges over all 
subformulae of A ,  not merely atomic subformulae. If B is atomic, (i.e., is a pro- 
positional variable), the corresponding value @ ( B, H )  has already been defined. 
For more complex formulae we define the valuation by induction on the number 
of connectives in the formula. Assume that @ ( B ,  H) and @ ( C ,  H) have already 
been defined for each H E  K. If ci3(B, H )  = @ ( C ,  H)  = T, then @(I3 A C ,  H) = T; 
otherwise @ ( B  A C ,  H) = F. If @ ( B ,  H) = T, then @ ( d B ,  H) = F; otherwise if 
@ ( B ,  H) = F, @(-B, H )  = T. Finally, to define @ ( n B ,  H): I f  @ ( B ,  H‘) = T for 
every H’ in K such that H R H’, we say ~ ( I J B ,  H) = T; otherwise, if there exists 
H’ such that H R H’ and 0 (B, H’) = F, we my Cp ( B ,  H) = F. 
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We say a formula A is true in a modcl 0 associated with a m.s. ( G ,  K, R )  if 
@ ( A ,  G )  = T; false, if (9 ( A ,  G) = F. Wc say A is valid if it is true in all its models’); 
satisfiable if it is true in a t  least one of them. We say shall show below (completeness 
and consistency theorems) that a formula is valid if and only if i t  is provable i n  
the appropriate system.2) 

2.1. In fo rma l  exp lana t ion  

In  [l] the writer introduced a modelling for S 5  based on the notion of a “pos- 
sible world”. We were given a set K of possible worlds, with one clement G singled 
out as the “real” world. A proposition was to be necessary iff it was ‘‘true in all 
possible worlds”. 

The present treatment generalizes that of [l] in the following respects: (1)  Again 
we have a set K of “possible worlds”; again the real world G is a distinguished 
element. Every atomic formula (i. e., propositional variable) P is assigned a truth- 
value in each world H; in fact, this truth-value is @(P, H). Here we already have 
a slight divergence from the treatment in [I]. For in [I], we did not have an auxiliary 
function 0 to  assign a truth-value to P in the world H; instead H itself was a “com- 
plete assignment”, that is, a function assigning a truth-value to every atomic sub- 
formula of a formula A .  On this definition, “worlds” and complete assignments. 
are identified ; so distinct worlds give distinct complete assignments. This last 
clause means that there can be no  two worlds in which the same truth-value is assigned 
to each atomic formula. Now this assumption turns out to  be convenient perhaps 
for 55, but i t  is rather inconvenient when we treat normal MPC’s in general. In 
the present paper we drop i t ;  we are given an a r b i t r a r y  set K of “possible worlds”, 

l) Actually, we define validity in M (54, S5, BRouwERsche) as truth in all M (S4, S5, 
BRonwERsche) models. Explicit mention of a particular system, M, 54, 55, or BROUWERsche, 
is omitted here and henceforth whenever the same remarks or definitions apply to all four 
systems. It will be understood that for “model” or “m.8.” we read M, 54, 85,  or BRouwERsche 
model or m. s., the other definitions being correspondingly rclativized to  a particular system. 

2, For systems based on 54 and M and (with his initial formulation modified; see below) 
on 55, HINTIKXA has discovered a modelling similar to the present one. T. J. SMILEY and his 
pupils have discovered modelling for these three systems, based on MCKINSEY [9], which, 
though somewhat further removed, is probably basically equivalent to  the one given here; 
and I have heard lately that MCKINSEY himself left an unpublished modelling of his awn. 
BAYART [8] has proved the completeness of 55* independently of El]. GUILLAUME [S] has used 
semantic tableaux in a topological investigation of M and S4; GENTZEN rules similarly to the 
tableau rules are given in [lo], [ll], 1121. The modelling for modal logic given in KANUER [El, 
though more complex, is similar t o  that in the present paper. The most surprising antici- 
pation of the present theory, discovered just as this paper was almost completed, is the algebraic 
analogue in JONSSON and TARSKI [17]. Independently and in ignorance of [17] (though of course 
much later), the present writer derived its main theorem by an algebraic analogue of his 
semanticcsl methods; the proof will appear elsewhere. None of these authors (except for some 
initial impetus from CURRY [lo]) has been compared in detail by the present writer with hia 
own work, which is independent of them; a detailed comparison may be useful to others. 
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a distinguished “real world” G, and a function O(P,  H) assigning to each proposi- 
tion P a truth-value in the world H. (2) A deviation from [l] of more consequence 
is found in the use of the relation R. Intuitively we interpret the relation R as 
follows: Given any two worlds H,, H, E K, we read “H, R Ha” as Ha is “possible 
relative to HI”, “possible in H,”, or “related to HI”; that is to say, every pro- 
position true in Ha is to be possible in H,. Thus the “absolute” notion of possible 
world in [l] (where every world was possible relative to every other) gives way to 
relative notion, of one world being possible relative to another. It is clear that 
every world H is possible relative to itself; for this simply says that every pro- 
position true in H is also possible in H. In accordance with this modified view of 
“possible worlds”, we evaluate a formula A as necessary in a world H, if it is true 
in every world possible relative to H,; i.e., @ ( C I A ,  H,) = T iff @ ( A ,  Ha) = T for 
each Ha such that HI R H2. Dually, A is possible in H, iff there exists Ha, possible 
relative to H,, in which A is true. 

Finally, we can ask various questions regarding the relation R, e.g., whether 
it is transitive. Given H, R H, and Ha R HI, does it follow that H, R H8? To say 
that Ha R H, is to say that any formula A true in H8 is possible in H, (i.e., Q A  
is true in HB); but then, since H, 8 Ha, it follows in turn that O A  is possible (A is 
“possibly possible” and‘ OOA is true) in HI. In  order to assert that H, R Ha, we 
need to show that if S is true in H,, it is possible in H,; but we have shown above 
that A is at  least possibly possible in H, ; SO the additional reduction axiom we need 
in order to assert H, R H, is “what is possibly possible is possible”! *This reduction 
axiom of 54 boils down to the assertion that R is transitive. Similarly, the BROKWER- 
ache axiom says that R is symmetric. For let A 3 O A  hold and let H, R H,; 
then we will have H, R H, if we can show that anything true in H1 is possible in H,. 
But if A is true in H,, by the BRomRsche axiom O A  is necessary in H,; that 
is, it is true in all worlds possible relative to H, . In  particular, gP is true in H,, 
Q.E.D. The reduction axioms of cbsicul modal logic reduce to simple properties 
(above and beyond reflexivity) of the relation R. If we abandon the relation R and 
just use the set K as in [I] (or equivalently, we let R be the relation holding between 
every pair of elements of K), then we are saying that every possible proposition 
is necesstlrily possible, the oharaateristio axiom of S5. It turns out that we get 
the same reduction axiom, however, if we simply assume that R is an equivalence 
relation; see 2.2 below. 

(3) One minor deviation from [l]: In the present paper, if @ ( B ,  G) = T, we say 
that B is true in the model CD; previously we said 3 was d i d  in the model. The 
present terminology is clearly an improvement. 

2.2. Connected models 

Let R* be the “ancestral” of R, in the seme of [2].1) A m. s. (G , K , R) is called 
connected iff for all H E K,  G R* H . A model 0 is connected if it is defined on a 

l) Similarly for the relation “s” below, s* wil l  be its anoeetrel. 



SEMANTICAL ANALYSIS OF MODAL LOUIC I NORMAL MODAL PROPOSITIONAL CALCULI 71 

connected model structure. We show that every satisfiable formulu has a connected 
model (equivalently, that every non-valid formula has a connected countermodel). 
(Here if A is a formula, @ is a model for A iff A is true in @; otherwise, a counter- 
model.) 

Let A be satisfiable in a model @ ( P ,  H) defined on a m.s. ( G ,  K, R ) .  Let K’ 
be the rct of all H E K such that G R* H ,  let R’ be the restriction of R to K’, and 
let @’(P, H) be @ with H restricted to K’. Then ( G ,  K’, R’) is a m.s., and @’ is 
a model in ( G ,  K’, R’). Clearly @’ is connected. We show by induction that for 
any subformula B of A ,  and H E K’, @’(B, H) = @ ( B ,  H).  (Hence it will follow 
that, since @ ( A ,  G )  = T, @ ’ ( A ,  G)  = T, so that @’ is a model of A as desired.) 
It B is atomic, the result is immediate. If the result has already been proved for C 
and D, and B is C A D or -C,  the verification for B is trivial. If B is ~7 C ,  we carry 
out the induction step thus: We notice that, if H E K’, H R’ H’ implies H’ E K’, 
;itid hence H R H’. So, for H E K’, H R H’ iff H R’ H‘. By the inductive hypothesis, 
for H’E K’, @ ( C ,  H’) = @’(C, H’). Now (1) @(oC, H) = T iff VII ’E  K s.t. 
HRH’ ,@(C,H’ )=T; (2 )@‘ (nC,H)=T i f fVH’E K’s.t.HRH’,@’(C,H’)=T. 
- The preceding discussion shows that if H E K’, he right hand sides of (1)  and (2) 
arc equivalent; so @ ( o C ,  H )  = T iff @ ‘ ( o C ,  H) = T, and hence @ ( o C ,  H)  = 
= @’( u C ,  H), as desired. 

So without loss of generality, we could restrict our considerations to connected 
models. Note that in a connected model in] which R is an equivalence relation, any 
two worlds are related. This fact accounts for the adequacy, for 55, of the model 
theory of [l]. 

2.3. Trees 

A triple ( G ,  K ,  S ) ,  with K a set, G E K ,  and S a relation defined on K (not 
necessarily reflexive) is called a tree (and G is called its origin iff :  (1) There is no 
H E K s.t. H S G; (2) for every H E K except G, there is a unique H’ s.t. H’ S H; 
(3) for every H E K ,  G S* H .  If H S H’, we call H the predecessor of H’; in terms, 
then of S,  K is characterized as the field of S,  and G as the unique element of K 
without a predecessor. So we can speak of a relation S as a tree relation if a G and K 
satisfying the previous conditions exist;’they will then be determined by S. 

An M-m.s. (G, K ,  R) is called a tree M-m.s. iff there exists a relation S such 
that (G , K, S )  is a tree and R is the smallest reflexive relation containing S (the 
reflexive relation “generated by” S ) .  Clearly in this case H, R Ha iff H, S H, or 
H, = H,. Similarly an S4 (BRouwERsche, 55) m.s. ( G ,  K,R) is a tree 54 (BROUWER- 
sche, 55) m. s. iff there is a relation S such that (GI K ,  S )  is a tree and R is the 
smallest reflexive and transitive (reflexive and symmetric, equivalence) relation 
containing S.  Note that an 84 m.s., may be, a tree S4-m.s., and yet not be a 
tree M-m.s.; and similarly for the other cases. 

Clearly every tree m.s. is connected. For by condition 3), for each H E K ,  G S* H ;  
and since S C - R ,  it follows that S* 2 R*. In S5, every finite or countable connected 
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m.s. is a tree S6-m.s. ThL need not hold for S4, and in fact there are conneoted 
S6 model structures (e.g., K = {G, Hj  and R relates all pairs) which are tree S6- 
model structures, but not tree S4-model structures. Nevertheless, when confusion 
does not arise, we wil l  leave out reference to a given system when that system is 
understood throughout; if we say “tree m.8.” when we are talking about 54, w0 
mean “tree S4-m.s.,” and the like. 

A model associated with a tree m.s. is calied a tree model. We will show below 
(a stronger result than 2.2) that the semantical theory would lose no generality if 
only tree models were admitted (cf. 3.3). Tree model structures admit the obvious 
oonvenient diagramatic representation which inspires their name. Put G a t  the 
origin, connect each H such that G S H directly to G, and so on. 

3. Semantic tableaux 

The notion of semantic tableau (cf. BETH [6] )  developed here is similar to that 
of [l], which should be read as background. Again we deal at each stage of the 
oonstruction with a system of alternative sets of tableaux; in each set, one tableau 
is singled out as the main tableau, while the others are auxiliary. The only difference 
between the present situation and that of [l] lies in the fact that each alternative 
set of the system is ordered by a reflexive relation R, parallel to the reflexive R 
of the model theory, so that each stage of the construction is now a system of ordered 
alternative sets. We use letters t , tl, tll, t,, f, , . . . for tableaux; if t, R f,, we say 
that f a  is “related to” t,, or that fa is “auxiliary to” t,. The rules Nl, Nr, and A1 
remain as in [l], as we shall see. So, in effect, does the rule Ar, but its restatement 
is complicated (see below). The rules Y1 and Yr are changed so as to parallel the 
new treatment of necessity in the model theory. 

Given a formula A, in order to see whether it is valid we attempt to find a 
counterrnodel to that formula; 3.110 countermodel exists, the formula is valid. If A 
has the form A, A * - A A ,  .3.  Bl v - * - v B,, clearly A,, . . . , A, must be true, 
and B,, . . ., B,, fabe, in any countermodel tio A. We represent this situation by 
putting A,, . . .,A,,, on the left, and B,, . . ., Bn on the right of the main tableau, 
of the construction; this represents our attempt to find model in which A,, . . . , A,,, 
are true while B,, . . ., B, are false. We. then continue the construction by the 
following rules (which apply to any tableau, main or auxiliary): 
N1. If H A  appears in the left oolumn of a tableau, put A in the right column of 
that tableau. 

Nr. If -A appears in the right column of a tableau, put A in the left column 
of that tableau. 
A. If A A B appears in the left column of a tableau, put A and B in the left co- 
lumn of that tableau. 
Ar. If A A B appears in the right column of 8 tableau 4 ,  there are two alternatives; 
Extend the tableau t either by putting A in the right column or by putting B in 
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the right column. If the tableau t is hi an ordered set 9, it is clear that: the next 
stage we have two alternative sets, depending on which extension of the tableau t 
is adopted. Informdly speaking, if the original ordered set is diagrammed structur- 
ally on a sheet of paper, we copy over the entire diagram twice, in one case putting 
in addition A in the right column of the tableau t and in the. other case putting B; 
the two new sheets correspond to the two new alternative sets. I hope this explana- 
tion makes the process clear intuitively; the formal statement is rather messy: 
Given a tableau t in an alternative set 9, if t has A A B on the right, we replace 
9 by two alternative sets, 9, and 9 2 ,  where 9, = Y - {t} u (t,) and 9, = 
9 - { t} u { t,}, and tl (ta) is like t except that in addition it contains A (B) on 
the right. Since Y is ordered by a reflexive relation R, we must define orderings R, 
and R, on the two new sets, 9, and 9,. Informally stated, the ordering R, (R,) 
of Y1(9a) is precisely the same as that of 9, except that tl(t2) replaces t through- 
out. We state this condition more formally for 9,: Let t’ or t“ be any tableau 
of Y other than t .  Then t’ R, t, iff t’ R t (in 9), t, R, t’ iff t, R t, and t’ R, t” iff 
t’ R t”. Further, to make R, reflexive, we stipulate that t, R t,. These conditions 
determine the new ordering R, on 9,. Similarly for 9,. 

Yl. If O A  appears on the left of a tableau t ,  then for every tableau t’ such that 
t R t’, put A on the left of t‘. 

Yr. If A appears on the right of a tableau t , then we start out a new tableau t’, with 
A on the right, and such that t R t’. 

Given any alternative set 9, ordered by a relation R, the rules above stipulilte 
that certain tableaux are to be R-related (cf. in particular Yr and Ar). In  addition 
to these stipulations, we set requirements corresponding to those for the corre- 
sponding model structures. As R in (G , K ,  R) was reflexive, so R is assumed re- 
flexive. Further for SCtableaux we assume R to be transitive, in BRowwFmche 
tableaux we assume R to be symmetric, and in SS-tableaux we assume both. I n  
M-tableaux, of course, we place no restriction, other than reflexivity, on R. Fina.lly 
we aasume that R holds only as required by the stipulations preceding and by 
the rules Yr and Ar above (i.e., R L to be the smallest relation satisfying these 
conditions). 

As in [1], we define a tableau as dosed iff some formula A appears on both sides 
of the tableau, a set of tableaux as closed iff some tableau in it is closed, a system 
of tableaux as closed iff each of its alternative sets is closed. Since a t  each stage 
of the construction we have a system of alternative sets, we can finally define a 
construction to be clos d iff at some stage of the construction, a closed system of 
alternative sets appears. 

Finally, we define (terminology of GALLEOHER) a construction for A as one started 
out by putting A on the right of the main tableau of the construction. 

Two restrictions are placed on the rules, in order to facilitate termination of 
the construction. A rule is not to be applied to a formula occurring in a closed 
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alternative set; nor is it to  be applied if it is ‘‘superfliiouS”. (“Superfluous” is defined 
by example: Yr is superfluous iff there already exists a tableau t‘ s.t. t R t’ with A 
0s  the right of t’; this tableau t’ may, of course, be t itself. N1 is superfluous iff A 
already appears on the right of t ,  and so on.) 

Strictly speaking, it might be more rigorous if we specified a definite order of 
priority in which the rules were to be applied. But actually (as is clear from the 
semantical results of 3.2), such a restriction of order would be irrelevant to the 
question whether a tableau construction elloses ; the rules are “permutable.” Hence 
on the other hand, if i t  is convenient for a particular proof, we can specify any 
ordering we desire; this fact is exploited in 5.1. 

a ( A  A B )  ~ ( o A A  OR) 
A A B  

A --f 

R 

O A A C I B  

or : 

~ ( A A B )  
A A B  

A 
B 

~ ( c I A A u B )  C I A A U B  
@ A  

f 

On each alternative, we recopy the entire diagram, but in one, o A  goes on the 
right of tz (which gets relitbelled t2J, while in the other B goes on the right of f2 

(which gets relabelled t2 2). We continue the development of the first alternative 
(the other is similar): 

o ( A A B )  
A A B  

A 
B 

~ ( o A A  o B )  U A A U B  
oB 

-+ 
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By Yr again, we introduce t, with A on the right. We have f, R t,, t,, R ts as shown 
by the arrow. Since t, R t,, and (A A B) is on the left of t,, we put A A B on the 
left of t,,. Also, by the transitivity of the arrow tl R t 3 ,  so we put ( A  A B) on the 
left of t3 .  But thence by Al, A and B go on the left of ts. The construction is closed 
Bince A appears on both sides of t,. This shows that there can be no Sbmodel @ 
in which ( A  A B )  is true while ( o A  A B)  is false. For in such a model, as 
is clear by following the construction, to each ti (i = 1, 2 ,  3), there would come- 
spond a world Hi(G = HI), with the property that for any C, @ (C, Hd) = T(F) 
if C appears on the left (right) of 4.  Since on the alternative we have chosen, A 
appears on both left and right of t3 ,  we would have to have both @ ( A ,  H,) = T, 
and @ ( A ,  Ha) = F, a contradiction. (On the other alternative, we would have 
@ ( B ,  H,) = T = F.) Note further that if R is n o t  transitive, we would no longer 
have closure; in fact the parenthetical formulae would no longer appear in t8. 
Thence we would indeed get an M-model 4j in which @(CIA A 023) = T while 
@(o(oA  A o B ) )  = F. The nature of this model @ in (H,, K,R), with H, R H ,  
and H, R H8 can be “read off” (partially) from the tableaux. We look at those 
places where atomic formulae occur on the left or right. Since A and B are on the 
left of tl and t,,, we have @ ( A ,  HI) = @(3, HI) = @ ( A ,  H,) = @ ( B ,  H,) = T; 
while on the other hand, since A is on the right of t3 ,  @ ( A ,  H,) = F. B appears 
on neither side of t,; this shows @ ( B ,  H,) may be assigned arbitrarily. The reader 
can check that, no matter which value we give to @ ( B ,  H3), we have 

@ ( I J ( A A B ) ,  HI) = T  and @ ( o ( ~ A A  oB), HI) = F. 

Further, one notas that the tableau construction would not be altered if the arrow 
were read as symmetric; so the model would still work if we stipulated in addition 
that H, R HI and H, R H,. Hence it follows we have a BRouwERsche model with 
the stated properties. The upshot of this discussion is: ( A  A B )  3 o ( o A  A B )  
is valid in 54, but not in M and the BROUWBRsChe system. 

As an exercise, let the reader consider the following S 6-construction, beginning 
with N O A  on the right and -n A on the left: 
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Since A appears on both the left and right of t,, the construction is closed. Notice 
that we required symmetry of R to  put A on the left of tl, while symmetry and 
transitivity were required to  put A on the left of t, . Hence neither the BRouwERsche 
nor the S4-constructions would be closed, and in the S4-construction A would not 
appear on the left of t,. This shows that in S6, but in none of the other systems 
we have considered, - 0 A 3 - A is valid. 

3.2. Equiva lence  of t a b l e a u x  t o  models  

This section shows that a construction for A is closed if and only if A is valid. 
for each of the four systems we are considering (or indeed for any other systems 
in which precisely the same restrictions are put on R for both tableaux and models). 
The theorem reduces to two lemmas, similar to the first two lemmas of [l]. 

Lemma 1. If the construction for A is closed, A i s  valid. 

Proof .  Assume for reductio ad absurdurn that A is n o t  valid. Then there exists 
a model @ in a model structure (GI K ,  R)  such that 0 ( A ,  G)  = F. Now we shall 
show, by induction on n, that for each n ,  a t  the nth stage of the construction, 
there is an alternative set 9’ of the construction and a map a, mapping tableaux 
of 9’ into elements of K , with the following property : If t is a tableau of 9, H = oc (t) , 
anxi B i s  Any formula occurring on t b  teft (r ight)  of t , then 0 (B  , H) = T (F) . Further- 
more, if t, and t, are in 9, HI = cx ( t,) and H, = 01 (t,) , then t, R t, implies H, R H,. 

To carry out the induction, notice that it is obvious for n = 1. Here we have 
only one tableau t with A on the right; and if we set oc (t) = G , we have @ ( A ,  G) = F, 
as required. Assume the result proved for the nth stage; then there is an alternative 
set 9 of the nth stage, and a map 01 ,  with the required properties. 

Let us attempt now to extend the result to the (n + 1)th stage. The (n + 1)th 
stage must be obtained from the nth by one of the rules, which is applied to  some 
tableau of some alternative set 9’ of the system at this stage. Now if 9” + 9’, 
then 9’ remains unchanged at the (n + 1) th stage and the induction step has been 
verified trivially. So let us assume that 9‘ = 9, so that the rule is applied to 
some tableau t of 9’. It the rule is Al, then B A C appears on the left of t , and b y  
hypothesis, for H = a ( t ) ,  we have @ ( B  A 0, H) = T. Hence @(B, H) = 
= @(C, H) = T, so when A1 instructs us to  put both B and C on the left\column 
of t, it preserves the required properties of cx. We say that this fact “validates” 
Al. Similarly we can validate N1 and Nr. If the rule applied is Ar, then B A G 
appears on the right of t, so by hypothesis 0 (B A C, H) = F. Hence either 
O ( B ,  H) = F or @(C, H) = F. Now Ar correctly instructs us to  consider these 
two possibilities; it has us replace the tableau t of 9 by either of two alternative 
tableaux, t, and t,, both like t except that in addition tl contains A and t2 con- 
tains B on the right, yieIding two new alternative sets 9, and 9,. If @ (B, H) = F, 
the set 9, will satisfy all requirements; otherwise, O ( C ,  H) = F, and 8, satisfies 
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all requirements. If the rule Yr is applied to  a tableau t with u B on the right, 
then by hypothesis @ ( B ,  H) = F. Yr instructs us to introduce a tableau t’, with 
t R t’ and B on the right of t’. But since @ ( B ,  H) = F, by definition there exists 
H’ such that H R H‘, and @ ( A ,  H’) = F ;  then in the (n + 1) th  stage we can extend 

01 by 01(t’) = H’, and the extended 01 will satisfy all requirements. Finally, for Y1, 
if B appears on the left of t ,  then a t  the (n + 1) th  stage we are to put B on the 
left of each tableau t’ such that t R t’. Correspondingly in the model @, we have 
by hypothesis of the induction that @(n B ,  H) = T; hence, for every H‘ s.t. 
H R H’, we have @ (B, H’) = T. Now by hypothesis of the induction, if t R t’, 
and a(t’) = H’, we have H R H’, and hence @ (B, H’) = T. So when we put B 
on the left of t’ in the (n + 1)th stage, the requirements on 01 are still satisfied. 
Finally, in addition to the rules, the stipulations on R (reflexivity, transitivity, 
etc.) can lead us to assert, for certain pairs tableaux t and t’, that t R t’; wc need 
to verify that correspondingly H R H’ (H = 01 (t) , H’ = o( (t’)) . This verification is 
immediate, since the stipulations on the relation R between tableaux are the same 
as the restrictions on the relation R of the m. s. (G , K , R)  . 

So the italicized assertion has been verified. Now since the construction is closed, 
there is a stage in which every alternative set contains a tableau with some formula 
on both left and right. By the italicized assertion, this stage contains a set Y and 
a map 01 related to  the m. s. (G , K, R) and to the model @ in the manner described 
by the italicized property. Now ,4p contains a tableau t with a formula B on both 
left and right. Hence if H = 01 ( t ) ,  since B occurs on both the left and right of t ,  
we have @ ( B ,  H) = T = F, a contradiction. So the reductio is complete. Q.E.D. 

Lemma 2. If the constructz’on for A is not closed, then A i s  not valid. 

Proof .  Suppose the construction for A is not, closed; then at  every stage of the 
construction, one of the alternative sets of the stage is not closed. We intend, as 
in [l], to deduce from this fact the existence of a countermodel @ to  A on a m.s. 
(G , K ,  R ) .  This deduction is not quite so straightforward as might appear from 
the proof of the corresponding lemma in [ l ]  (Lemma 2); actually the proof in [ l ]  
of that lemma was inadequate. In  fact, the assertion in [l], p. 6, that “there exists 
a set of tableaux, one of the constructionla alternative sets, which is not closed,” 
was quite meaningless; we are guaranteed a non-closed alternative set a t  every 
s t age  of the construction, but there is no such thing as an “alternative set” for 
the whole construction. 

Let us then proceed more cautiously: We notice that the (n + 1) th  stage of 
a construction is obtained from the nth by the application of some rule. Let Y 
be an alternative set which is not closed and which us unaffectcd by the rule; then 
it appears unchanged in the (n + 1) th  stage, and we say that the set Y of the 
(n + 1)th stage is an immediate descendant of the set Y of the nth stage. On the 
other hand, if a rule is applied to Y in the nth stage, Y is transformed by the rule 
intoo a set 9‘ (or, if the rule is Ar, into two alternative sets 9’ and 9”’); then 
the set Y’ (or sets 9” and 9”) of the (n + 1)th stage is (are) called an ( ) imme- 
diate descendant(s) of Y in the nth stage. Similarly, speak of a tableau t’ in the 
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(n + 1)th stage as an “immediate descendant” of a non-closed tableau t in the 
nth stage, under either of the following conditions: a) f is unchanged by the rule 
applied to obtain the (n + 1) th  stage from the nth, and t’ is the same as t; or b) 
t is transformed by the rule in question into t’, or (in the case of Ar) into two ta- 
bleaux, one of which is f’. Both for tableaux and for alternative sets, we shall use 
the term “descendant” as the ancestral of the relation “immediate descendant”. 

Notice that, in a construction for A,  we begin with only one altcrnative set. 
If then we diagram the relation “immediate descendant” (between alternative sets), 
we get a natural tree structure; and in fact this relation (more strictly, its conterse) 
is easily verified to be a tree relation in the sense of 2.3. We notice that, if an 
alternative set Y is closed, it has no immediate descendants, since no further rules are 
applied to it1); hence the tree corresponding to a closed construction is finite. If 
a construction is n o t  dosed, the tree it may he finite or infinite. Suppose it is 
finite ; then clearly, thc construction has only finitely many stages. Since the COII- 

struction is not closed, the terminal stage of the construction contains a t  least one 
alternative set which is not closed. We choose such an alternative set, and call 
it 9,. 

Now in this finite case, i t  is easy to  define a countermodel to A .  Lct ( G ,  K ,  R) 
be a model structure in which K is the alternative ordered set Yo, R is the relation R 
which orders Yo,  and G is the main tableau of Yo. Define a model SD (P, H) (P ato- 
mic, H E K), by @ (P, H) = Tiff P appears on the left side of H (remember, K = Yo, 
a set of tableaux!); othcrwiae, @(PI H) = F. Now we show, by induction on the  
number of symbols in a formula U ,  that if B appears on the left (right) of 
H, @ ( B ,  H) = T(F). For atomic B, appearing on the left, this is a matter of defi- 
nition. If B appears on the right, and is atomic, we notice that since the construo- 
tion is not closed B cannot appear on the left, and hence @ ( B ,  H) = F. If B A C 
appears on the left of H , by A1 (and the fact that the construction has terminated 
the stage containing Yo,  so all the rules of the construction have been applied), 
both B and G must appear on the left of H ;  hence if we assume the hypo- 
thesis of the induction, @ ( E ,  H) = @(C, H) = T, by definition it follows that 
@ (B A C, H) = T. Similarly if B A C occurs on the right of H, either B or G does, 
say B ;  then by the inductive hypothesis, @ (B,  H) = F, and hence @ (B A C, H) = F, 
as required. The treatment of negation is similar. If B appears on the left of H ,  
then by Yl (and the fact that the construction has terminated), B appears on the 
left of every tableau H’ of K s. t .  H R H’. Hence by the inductive hypothesis, for 
all H’ s.t. H R H’, we have @ ( B ,  H’) = T; so, by definition, @ (0  B ,  H‘) = T. 
If B is on the right, Yr guarantees an H’ with B on the right, and H R H’; by 
the inductive hypothesis, @ ( B ,  H‘) = F, so @ (0 E ,  H) = F, and the induction ia 
complete. Now we need only observe that A occurs on the right of G to obtain 

l) More explicitly, we notice that the definitions already excluded the possibility that a closed 
set (tableau) should have an immediate descendant; and the fact that no rule is applied tc such 
13 set (tableau) justifies this procedure. A n m - c h e d  set (tableau) to which no rules are applied 
at a stage has an immediate descendant at the next stage; namely, itself. 
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the conclusion that @ ( A ,  G)  = F, i.e., that @ js  a countermodel to A .  This com- 
pletes the finite case. 

On the other hand, if the construction is infinite and hence not closed, we need 
to apply KONIQ’S Unendlichkeitslemrna to the corresponding tree. According to this 
lemma, the tree, being infinite, must contain an infinite path ; so, corresponding 
to the path, we get an infinite sequence Y, ,  Y, ,  . . . of non-closed alternative 
sets, each of which is an immediate descendant of its predecessor in the sequence. 
(Here 9, corresponds to  the first stage of the construction, 9, to the second, etc.) 
Call this infinite sequence a .  Notice that any t of 9, possesses a unique immediate 
descendant t’ in 9n+l. If t is a tableau of 9, which is not the immediate des- 
cendant of any tableau of Yn-l, then either n = 1 or t was introduced into Y, 
by Yr ; in either case, we call t an initial tableau of a .  A sequence of tableaux, whose 
first term is an initial tableau of a ,  say a tableau of 9,, such that each term after 
the first is an immediate descendant, in the sequence a ,  of its predecessor, is called 
a pseudo-tableau. of a .  The (unique) pseudo-tableau of a whose first term is the 
tableau which started out the construction (with A on the right) is called the main 
pseudo-tableau of a .  A pseudo-tableau can contain a t  most one term which is a 
tableau of Ym; if it contains one, we say that it has a representative in Ym. If z1 
and z, are two pseudo-tableaux of a ,  we say that tl p t, iff there exists an Ym, 
with representatives t, and t2 of t1 and t, in Y,,,, such that tl R t,. Clearly, since R 
is reflexive, and since every pseudo-tableau contains a representative in some 
Ym, Q is reflexive also. Notice further that if m > n and t is a pseudo-tableau with 
a representative in Y,, t has a representative in Ym also. Using this fact, it is 
easy to see that if R is transitive (symmetric), e is transitive (symmetric) also. 

Given a pseudo-tableau t: t , f’, t”, . . . , define a formula B as occurring on the 
left (right) of t iff it occurs on the left (right) of some tableau which occurs as a 
term of the sequence z . We now see that pseudo-tableaux behave like tableaux. 
Is fact, if B A C occurs on the left of t, so do 3 and C ,  and if B A C occurs on the 
right of t, either B or C must occur on the right. For if B A C occurs on the left 
of T, it occurs on the left of some tableau t of the sequence t, and hence occurs 
on the left of all tableaux succeeding t .  At some point in the sequence a rule A1 
was applied to a tableau t’ containing B A C on the left, so that in the immediately 
succeeding tableau t” B and C both appear on the left of t”. Hence, by definition, 
B and C appear on the left of t. The proof that t has similar properties for Ar, N1, 
Nr goes just the same way. Further, for Yr, we can prove that if n B  appears on 
the right of t, there exists a t’ in 01 s. t. B occurs on the right of t’, and t p t’. For 
let t be a tableau of t with B on the right; then by Yr there exists a tableau t’, the 
initial term of some sequence (pseudo-tableau) t‘, such that t R f’ and with B on 
the right of t’; then by definition, B appears on the right of t‘, and t p 7’. Similarly, 
if B occurs on the left of z, B occurs on the left of any tableau t‘ such that t p t’. 
Finally, observe that t can contain no formula B on both left and right. For if B 
did occur on both sides of the sequence t, we would have terms t and t’ such that 
B occurs on the left of t and on the right of t‘. Of the pair t and t’, one must occur 
earlier in the sequence t; suppose (without loss of generality) that i t  is t. Then B 



ao SAUL A. KRIPKE 

occurs onot only on the left of t ,  but on the left of t‘, so that t’, as a tableau, is 
closed. But since a closed tableau has no immediate descendants, the infinite se- 
quence t cannot contain a closed tableau, contrary to what has just been established. 
So no formula can appear on both sides of z. 

It should by now be evident that the set of all pseudo-tableaux z of a ,  ordered 
by the relation e ,  can replace the set 9, which was uaed in the preceding proof; 
the pseudo-tableaux have properties quite similar to the tableaux themselves. In  
fact, the countermodel to A now reads as follows: We define a m.s. ( G ,  K, R )  by 
taking G to be the main pseudo-tableau of a ,  K to be the set of all pseudo-tableaux 
z of a, and R to be the relation e .  Further, define the model @ (P, H) as assigning 
T to P iff P appears on the left of H ; otherwise F. Then, as in the finite case, it is 
easy to show that we have a countermodel to A .  

3.3. Trees a n d  a reformulation of t h e  rules  

Each of the ordered altermtive sets in a given stage of a construction has, in 
a natural and obvious fashion, the structure of a tree. In  fact, let K be an alter- 
native set of some stage of a construction, and let G be the descendant (in K of) 
the main tableau. For tl ,  t, E K, we say that tl S t, iff at some stage of the con- 
struction there is a tableau f{ with a formula, o A  on the right, and with ti just 
introduced by Yr at  this stage with A on the right, and such that tl and t2 are 
descendants of ti and ti, respectively. It is easily verified that (G K, S) is a tree. 
Further, we notice that the conditions we have imposed on the relation R can now 
be restated thus: R is to be the smallest relation between tableaux that contains S 
and satisfies the appropriate reflexivity, transitivity, and symmetry conditions. 
This, in turn, is precisely to say that (G , K , R )  is a tree m. a. (of the appropriate 
modal system) generated by the tree (G , K , 8) . Now in the preceding section, it 
was shown that if K is a non-closed alternative set of the terminal stage of a (finite) 
construction for A ,  a countermodel to A can be associated with the m. s. (G , K , R) 
(G = main tableau of K , R = ordering relation R). The present considerations 
show that this is a tree model. Similar considerations (left to the reader) show that 
the models given in 3.2 for non-terminating constructions (in terms of pseudo- 
tableaux), are tree models also. 

These considerations suggest that the rules, which we have stated in terms of R ,  
could instead be stated in terms of the basic tree relation S defined in the pre- 
ceeding paragraph (letting R drop out of the picture altogether). This is so. In a 
construction in terms of 8, the rules N1, Nr, A1 are unaltered. Ar is unaltered except 
that : 

(1) “R” is replaced by “8” throughout (and “R1” by “Sly’, ‘ (R i ’  by “8;’); 
(2) the italicized condition, included to ensure reflexivity, is dropped. (The rela- 
tion S ,  of course, is no t  reflexive.) 

Yr also has its original form, except that “R” is replaced by “8”. Y1 gets the 
brunt of the alterations. Since the relation S is not reflexive, and is neither transitive 



SEMANTICAL ANALYSIS OF MODAL LOGIC I NORMAL MODAL PROPQSITIONAL CALCULI 81 

nor symmetric even if R is, we must put in substitutes for these. conditions on R 
into Y1. Consider first M, where R is only reflexive. This corresponds to the fact 
that  if O A  is true in a world, so is A. We put this into t.he Y1 of M thus: 

Y1. Let A appear on the left of t, . Then put A on the left of tl and of any tableaux 
t2 such that tl S t,. 

I n  the previous formulation, it was superfluous to require that A be put on the 
left of t,, since R was reflexive. This holds no longer. For 54, we need further to 
obtain a transitivity surrogate. This could be handled by replacing “S” by “S*” 
in the rule Y1 as it was just previously stated; but we prefer a different procedure. 
It is based on the fact, easily verified for S4 models 0, that if @ ( o A ,  H) = T 
and H R H’, then @ ( C I A ,  H’) = T. So we stipulate: 

Y1. If o A  appears on the left of a tableau tl,  put A on the left of t, and put o A  
on the left of any tableau t2 such that t, S t,. 

Notice that, by a further application of Y1, since C I A  goes on the left of tz, so 
does A. Also if later a tableau tS is introduced with t2 S tS, since O A  appears on 
the left of t,, Y1 requires us to put CIA on the left of tS. So, clearly, we have the 
.effect of transitivity.l) 

The revised Y1 for the BRouwERsohe system follows: 

Y1. Let o A  appear on the left of t,. Then: (1) put A on the left of t,; (2) put A 
.on the left of every tableau t, such that f, S t,; (3) put A on the left of the (unique) 
tableau t, such that t8 S t,, if such a tableau exists. 

For an 55 construction, the rules Y1 for 54 and the BRouwERsche system are 
combined. 

Constructions in terms of S have the following useful property: if we call ta- 
bleaux t, and t, “contiguous” if tl S t2 or t, S tl,  then a rule applied to a tableau t 
can affect at most t and tableaux contiguous to t .  

The present ‘cS-formulation’’ of the rules will be exploited in section 4; its equi- 
valence with the previous “R-formulation” is clear, so a detailed proof (if any is 
desired) is left to the reader. &formulations are solely a matter of convenience, 
compared with the more basic R-formulation; if we had so desired, we could have 
baaed all proofs on R-formulations. For S6 tableaux, yet another way of formulat- 
ing the rules is given in [l]. 

l) Query: could an analogous device be used to get rid of symmetry? HINTIKKA, in hie ori- 
ginal formulation of S6, proposed the condition stated for S4, plus in essence the following 
additional clause: If 0 A is on the right of t, and t S t‘, then put 0 A on the right of t’. On 
this rule, the construction for N 0 A 3 0 - 0 A is closed. But the construction for the BROW- 
wERsche axiom, or for - A  3 0 - 0 A ,  is not closed, so the conjectured formulation of S6 
fa ih  In faot, this formulation lacks a GENTZEN Hauphtz. On the other hand, the new formu- 
lation of S4 comes (replacing GENTZEN sequents by tableaux) from CURRY [lo]; and the bck 
of any analogous formulation for S5 corresponds to the lack of a simple sequenzen formulation 
with Hauptaatz of Sb. 

6 Ztschr. 1. math. Loglk 
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4. Cornpletcness theorem 

4.1. Consis tency  p r o p e r t y  

We need to verify that every provable formula of (M, S4, S5, the BRouwERsche 
system) is valid in the appropriate model theory. In  every case this is an easy me- 
chanical task, especially if it is carried out with the aid of tableaux; we need only 
verify that every axiom is valid for the appropriate model theory, and that the 
rules preserve validity. 

One remark is in order. It is easy to show that R1 preserves validity; for if 
@ ( A ,  H) = T, @ ( A  3 B ,  H) = T, then by the valuation rules for “3”, @ ( B ,  H) = T 
also. But it is by no means easy to give a proof, without using the results of 3.2, 
that if the construction for A is closed and the construction for A 3 B is closed, 
so is the construction f a  B. Such a proof would involve a tableau analogue of the 
GENTZEN Hauptsatz. This Hauptsatz would take the form: Let a tableau con- 
struction be given, and let t be a tableau occurring in the nth stage of the con- 
struction, and let us be given two new “pseudo-constructions,” in which A is added, 
a t  the nth stage to the left and right of f ,  respectively (and the rules are applied 
to A later on). The GENTZEN Hauptsatz asserts that if the two "pseudo-construe- 
tions” are closed, so is the original. This Hauptsatz is easily proved by model- 
theoretic methods, once we invoke 3.2 to  assure ourselves of the equivalence of 
tableaux to  models; but if we wish to  avoid this theory, we can use a GENTZEN- 
like induction. I n  the case of quantified modality, this would allow us to prove 
constructively that the construction for A is closed iff A is provable; while the 
semantical proof of this result would be non-constructive. The present semantical 
proofs, in the domain of the propositional calculus, are either constructive or can 
be made such; so that an inductive proof of the GENTZEN Hauptsatz, though still 
interesting, is theoretically unnecessary a t  this stage. One might appeal, for such 
a proof, to  the previously published GENTZEN modal systems of CURRY [lo]. 
KANGER [12], and OBNISRI and MATSUMOTO [ll]. 

4.2. Completeness  p r o p e r t y  

We can show that every valid formula A is provable by showing that if the con- 
struction for A is closed, then A is provable in the appropriate system. Here we 
find it convenient to invoke tableau constructions based on the relation S ,  rather 
than using the relation R. 

First, for a tree of tableaux ordered by the relation 8 a t  a given stage of a con- 
struction, we define the rank of a tableau as follows: A tableau t has rank 0 in the 
tree if there is no tableau t‘ s. t .  t S t’. Otherwise, let t, , . . . , t, be all the tableaux 
4 such that t X ti. Then we definc Rank(t) = Max {Rank(ti)} + 1. It is easily 
verified that, for any finite tree of tableaux, (such as occurs in the alternative sets 
of a stage of a construction), a unique rank is defined for each tableau of the tree. 
(The tableaux of rank 0 are the endpoints of the tree; then work backwards by 
induotion.) 



SEMANTICAL ANALYSIS OF MODAL LOGIC I NORMAL MODAL PROPOSITIONAL CALCULI 83 

Define the associated formula of a tableau t a t  a stage to be A,  A * - * A A ,  A 

A -B, A . - * A -B,, where A , ,  . . . , A ,  are the formulae occurring on the left 
of i a t  the given stage and B,, . . . , B,, are the formulae occurring on the right 
of t a t  that stage. 

Further, define the characteristic formula of a tableau t a t  a given stage by in- 
duction on the rank of t : If t has rank 0, the charakteristic formula is the associated 
formula. If Rank(t) > 0 ,  let tl, . . . , t, be all the tableaux ti such that t S ti. For 
each ti, Rank (t,) < Rank (t)  , so by hypothesis, the characteristic formula of the 
ti have been defined already; let Bi be the characteristic formula of 4 .  Further, 
let A be the associated formula of t .  Then the characteristic formula of t is defined 
as A A OBI A OB, A . . . OB,. 

characteristic formula of the main tableau’) of the set. 
By the characteristic formula of a tree (ordered set) of tableaux, we mean the 

Example :  

Here each node represents a tableau, with the associated formula of the tableau 
indicated at  the node. B,, C, ) and C, are associated formulae of tableaux of rank 0; 
B, is the associated formula of a tableau of rank 1 ; and A is the associated form& 
of the main tableau, which is of rank 2. The characteristic formula of the tree is 
A A O(B,  A Oc, A OC,) A OB,. 

Let D,, . . . , D, be the characteristic formulae of the alternative sets of a system 
of sets a t  a stage. Then the characteristic formula of the system is defined a s  
D, v * * * v D,. 
Lemma.  If A,  is the characteristic formula of the initial stage of a construction, and 
B, is the characteristic formula of any stage, then t A,  3 B,. 
Proof .  To prove the lemma, it suffices to  show that for any m the character- 
istic formula of the mth stage implies the characteristic formula of the (m + 1)th 
stage. But the characteristic formula of the mth stage in general has the form 
D, v * * v Di v * - * v D,, where the Di are Characteristic formulae of alter- 
native sets. The characteristic formula of the (m + 1) th  stage will be either 

l) We extend the term “main tableau” to apply to any tree of tableaux in the following 
manner: In any such tree, the main tableau is the origin of the tree. Note that in any alternative 
set the at any stage of a construction, the “main tableau” (origin) of the set is the (unique) 
descendant in that set of the original main tableau which started out the construction. In short, 
if Ar is applied to a tableau t, then if t is auxiliary, the resulting tableaux t, and t2 are auxiliary 
tableaux of two alternative sets; otherwise they are main tableaux of two alternative set& 
And any other rule applied to a main (auxiliary) tableau leaves it main (auxiliary). 

6* 
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D, v . . . v D j ’ v . .  v D, or D, v . . . v Dj, v Dj, v . . - v D,,, wherc the rule which 
obtains the (m + 1)th stage from the mth opertkies solely on the alternative set 
whose Characteristic formula is D3. If thia rule is not Ar, it will change the alter- 
native set so that the characteristic formula be comes Di; but if it is Ar, the alter- 
native set in question will “split” into two alternative sets, with respective charao- 
teristic formulae Dj, and Dj,. It clearly suffices, in order to prove that  the charac- 
teristic formula of the mth stage implies the characteristic formula of the (m + 1) th, 
t o  slio w that Di 3 or Dj 3 (Oil v D j J ,  as the case may be. I n  other words, when a 
rule is applied to obtain the (rn + 1) th stage from the mth, we need only consider 
the characteristic formula of the sct to which the rule is applied. Let the formula 
I l j  have the form 

B A 0 (c, A 0 (E ,  A 0 (. . .))) A 0 (c2 A 0 (E2 A G ( *  . - ) ) ) .  

Now let, X and Y be formulae such that, t X 1 Y is provable. Then by R2, so 
is o ( X  1 Y ) .  But in all the modal systems we have considered, (which all con- 
tain M ) ,  k ( X  3 Y )  .3. C X  3 O Y ,  so we have k O X  3 O Y ;  we also know that 
t - X I  Y implies t - x ~ Z . 3 .  Y A Z .  

These two facts makes possible a greaG simplification of the proof that t- Di 3 Di 
(or t Dj I Dj, v DjJ;  namely we need only consider, in general, associated formulae 
of tableaux to which the rule we use actually applies. Suppose, for example, the 
rule transforms the formula C,  into Ci and affects no other part of Dj (i.e., Dj’ 
is obtained from DT by replacing C,  by Ci and leaving the rest unchanged.). Then 
if  we can show t C,  3 C,, it follows that  

k C ,  A O ( E ,  A 0(. . .)) 3 c: A O ( E ,  A o(. . .)), 
and hence, attaching the possibility signs, tbat 

I- O(C, A O ( E ,  A o(. . -1)) 2 o(G A o(E, A o(. . . ) ) I .  

Now, finally, we can attach the other two conjuncts ( B  and (C, A 0 (E, A 0 (. . .)))), 
thus obtaining Dj 3 0;. Similarly, in every case where a rule is applied to  obtain 
the (rn -1- 1)th stage from the mth, we can work with only part of the “nested” 
characteristic formula Di in order to obtain 03 3 0:. Bearing these observations 
in  mind, we break the proof down into cases, depending on the rule applied to  
obtain the (m + 1)th stage from the rnth (I would advise the reader to compare 
this proof with the analogous lemma in [l]): 

Case Nl. Justified by t- -A 3 - A .  

Case Nr. Justified by t- - - A  3 A .  

Case Al. Justified by F A  A B 1 A A R. 
Case Ar. A somewhat messy case, although i t  is conceptually quite clear. We 
must prove Di 3 Dj, v Dj,. Now the rule Ar applies to some formula A A B on 
the right of some tableau; therefore - ( A  A B )  occurs as a conjunct of the associated 
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formula of the tableau, so that - ( A  A B) occurs as a conjunct in the characteristic 
formula of the tableau. So let E A - ( A  A B )  be the characteristic formula of the 
tableau t in which A A B appears on the right; then we certainly have 

E A - ( A  A B )  :I: E A - ( A  A B) A -A .v. E A - ( A  A .B) A -B.  

If the tableau containing A A B on the right is the main tableau, this is the desired 
result i- Dj 3 Dj, v Djz,  since the characteristic formula of the main tableau of a set 
is the characteristic formula of the whole set. But in general we shall not be so 
fortunate; the tableau in question is merely auxiliary. Well, then we first 
observe that 

O ( E  A “ ( A  A B ) ) :  I: O ( E  A - ( A  A B) A -A .v. E A - ( A  A B)  A -I?), 

and that since t- 0 (X v Y) I. OX v 0 Y ,  we obtain 

t O ( E  A - ( A  A B))  3 O ( E  A - (A  A B) A -A) v O ( E  A - (A  A B) A -I?). 

Now if t’ is the (uniquely determined) predecessor of t (the tableau t‘ s.t. t’ S t), 
then the Characteristic formula of t’ has the form X A O ( E  A - ( A  A B ) ) ,  where X 
is the characteristic formula t’ would have if t were removed from the tree, Using 
the previous results and the distributive law for “A” over “v)’, we get easily 

t X A 0 ( E  A - ( A  A B))  : 3 : X A 0 ( E  A - ( A  A B) A -A) .v. 
X A O ( E  A - ( A  A B) A 43). 

If t’ is the main tableau, we are done; otherwise we continue in the same meanner. 
Eventually, after sufficient labor (using each time the distributive laws 0 (X v Y )  3 
3 O X v d Y a n d ( X v  Y ) A Z : I : X A Z . V . Y A Z ) ,  wearedrivenbackalongthe 
branch leading to t until we finally reach the main tableau of the tree, and obtain 
the desired result. 

Case Y1. The rule is applied to a tableau t with O A  on the left, and with cha- 
racteristic formula o A  A X A OE, A OE, A . . . , where the Ei are the characteristic 
formulae of tableaux ti with t S ti, and UA A X is the associated formula of t. 

First assume that we are dealing with a construction, based on 8, of M-tableaux. 
I n  this case, we need only justify putting A on the left of t and of all the ti such 
that t 8 ti ; the characteristic formula of t after this is done becomes A A A A X A 

A 0 (El A A )  A 0 (Ea A A )  . . . But clearly this can be obtained from the old cha- 
racteristic formula, using theorems t- o A  3 A ,  and k ( o A  A OE) 3 0 ( E  A A ) .  If 
we are dealing with an S4-construction, we must justify further putting o A  on 
the left of each ti such that t S ti; but this follows, analogously, from t- o A  A OE .I. 
.3.0 (E  A A )  , which is easily proved in S4. If we are dealing with a BaonwEIGsche 
oomtmction, we must justify, in addition to what was done in M, putting A on the 
left of every tableau t‘ such that t’ S t. In fact, such a tableau t’, if it exists, is unique, 
and its characteristic formula has the form Y A 0 (CIA A X A OE, A OE, A . . .). 
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We must show that the formula implies the new characteristic formula of t' at 
the (m + 1)th stage, viz.: 

A A Y A O ( A  A o A  A X  A O ( E ,  A A )  A O(E,  A A )  A . .  .), 

The only novelty beyond M is the occurrence of A which begins the formula. It 
can be obtained as follows: clearly t Y A O ( o A  A X A OE, A .. .) 3 0 C I A ;  but 
by the Baonwmache axiom, or rather ite dual, easily provable in the BRouwERache 
system, we have t 0 o A  3 A ,  which yields the desired result. The proof for S6 
follows readily from the preceding, since the S6 procedure is just the combination 
of those for S4 and the BRonwElasche system, and all the preceding proofs go 
through in S5. (An alternative method, for S6, is of course that of [l].) 

Case Yr. If o A  appears on the right of a tableau t,  the tableau t has charac- 
teristic formula X A - n A .  We are inetructed to start out a new tableau t' with 
A on the right; the charaoteristic formula of f becomes X A - o A  A 0 -A.  But 
dearly, since t- - o A  3 0 -A, we also have I- X A - o A  3 X A - nA A 0 -A. 
(Remark: of come, we may be required, by Yl, to put some formulae on the left 
of t', immediately afterward, but this has been justified under case Yl.) 

The proof is complete. 

Theorem. If A i s  valid (in M, 54, 56, BROUWERSOEE), it i s  provable (in th appro- 
priate system). 

Proof. We will prove that if the construction for A is dosed, then A is provable. 
Now since the construction for A is closed, there is a stage, say the mth, when 
every alternative set is closed; call the characteristic formula of this stage 
D, v 6 * - v Dm. Let D, be any disjunct; it is the characteristic formula of an alter- 
native set 9,. By hypothesis, 9, contains a closed tableau, whose associated 
formula is X A C A -C, where C is the formula occurring on both left and 
right; this formula is clearly refutable in all systems considered. In  fact, so is 
0 (X A C A -C), and hence so is any formula of the form Y A 0 (X A C A -C), 
orevenO(YAO(XACh --C')).Inshort,uaingthefactthat,if k -X, t - (Y  AX)  
and even t- -0 ( Y A X) (the latter since by R2, t -( Y A X)), we can obtain 
I- -Dj. Hence, since i was arbitrary, t -(D, v - - - v Dm). Finally, by the lemma, 
the characteristic formula of the first stage of the construction implies that of the 
mth. But here the characteristic formula of the first stage is just -A.  So the lemma 
t e l l s u s t h a t t - ~ A 3 D 1 v - ~ ~ v D m .  Since t-( D,v. . .vD,) ,  weobtain F A .  
Q. E. D. 
Remark. The theorem showed, in a purely syntactical constructive manner (with- 
out reference to models), that if the construction for A is closed, A is provable in 
the appropriate formal system. The development of the Characteristic formulae of 
successive stages is, in effect, a HERBRAND development from the cheracteristia 
formula of the initial stage; and we could, if we wished, base a proof procedure 
for modal logh solely on the development of characteristic formulae. 
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6. Applications 

5.1. Decidabili ty 

Although in the preceding we took account of the possibility of infinite tableau 
oonstructions, it is clear that we can show that the systems are decidable (in, 
say, a construction of the S type) if we can show that the procedure always ter- 
minates, either in a closed system of sets or in a finite countermodel to the for- 
mula whose validity is being tested. In fact, for M and BRonwERsche constructions 
of the S type, we can argue as follows: Familiarly, the modal degree of a formula A 
is defined inductively thus: An atomic formula has modal degree 0; deg(A A B) = 
= max(deg(A), deg(B)), deg(-A) = deg(A), and deg(oA) = deg(A) + 1 .  (Thus 
the degree is the number of “nested” necessity signs in a formula.) Finally, if t 
is a tableau (at a given stage of a construction), define deg(t) as the maximum 
of the degrees of the formulae occurring in t at that stage. 

Using this notion of degree, we show that M and the BRoowsRsche system are 
decidable. For let A be any formula, say first of M; we show, by induction on the 
degree of A, that the construction for A terminates. If the degree is 0, then A is 
a purely truth-functional formula, and the construction obviously terminates. 
Suppose the theorem has been proved for degree s m ;  let A be a formula of degree 
m + 1. Then the construction for A begins with a main tableau t with A on the 
right. We apply, before using Yr and introducing new tableaux, all the other rules 
(including Yl) within the tableau t. It is easy to see that only finitely many for- 
mulae are introduces in this manner, and that these rules are exhausted in a finite 
number of steps. Assume we have reached the end of these steps. Then by this time 
the tableau t has been in general replaced, on account of applications of Ar, by 
various alternative tableaux f l ,  . . ., t, (since Yr has not yet been applied, the 
alternative sets a t  this stage are all one-element sets). Let f’ be any one of these; 
concentrate on it. Let o B,, . . . , B‘ be all the formulae of the form o B appear- 
ing on the right of t’. Apply Yr, obtaining various tableaux 6 with Bi on the right, 
and with t’ S ti. Now since, B is a subformula of A ,  deg(o B) 5 m + 1 ,  
deg(B) In. Further, if any formula C appears on the lef t  of t’, we put C on 
the left of ti; but, by the same argument, deg(C) m. It is clear that no other 
rules introduce into t, formulae of degree >m unless such formulae have already 
been introduced; so we conlude that, a t  every stage of the construction, deg(ti) 5 .m. 
In  fact, in the system M, aside from putting such formulae C on the left of t[ and 
a formula Bi on the right, the tableau td romains entirely unaffected by the tableau 
t thereafter; and all the rules that are applied to or affect the tableau t have already 
been applied. So, in M, we can now proceed to continue the construction from each 
of the tableaux ti (i + 1 ,  . . . , E ) .  Notice that no tableau related to ( can affect 
any tableau related to ti (i =I= j); this includes the statement that these tableaux 
do not affect each other. Hence, if we concentrate our attention on ti, we note 
that the part of the construction continuing outward from t: (i.e., the construction 
restricted to the subtree determined by 6)  is unaffected by $ and t , and thm pro- 
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ceeds exactly as if ti were the main tableau of the construction. Since deg (ti) 2 m ,  
the inductive hypothesis assures us that this part of the construction terminates 
in finitely many steps. Since there are only 1 tableaux (, the part of the construc- 
tion restricted to the tableau proceeding from t’ also terminates. But further t’ 
was an arbitrary element of a f ini te  list of alternative tableaux; so, even if we 
consider all of these, we still obtain a construction that terminates in a finite num- 
ber of steps. 

The preceding reasoning applied to M; but it is extendable to the BROUWERSChe 
system. Here again we have t’ and 1 tableaux ti s.t. t’ S ti; but in this case, there 
is no guarantee that t’ will be unaffected by the ti. I n  fact, if a formula D appears 
on the left of ti, we must put D on the left of t’. Now, at least initially, when t i  is 
started out by putting Bi on the left (by Yr) and various formulae Ci on the right 
(by Yl), the argument given above shows that these formulae are of degree s m .  
This property is preserved by applications of the rules; every subformula of a for- 
mula of degree m is of degree I; m. Assume for the moment that D is a sub- 
formula of Bi or of one of the formulae of the form Cj; then deg(o D) 5 m ,  hence 
deg(D) 5 rn - 1. Now, by applying the rules to D on the left of t’, we may get 
a formula E l ,  which must therefore be a subformula of D, on the right of t’.l) 
When we apply Yr to it, we obtain a tableau ti+l (say) started out with El on the 
right, Notice that deg( u El) 2 deg(D) 5 m - 1 ,  hence deg(E,) 5 m - 2 .  Further 
if a subformula u F of D appears on the left of t’, we must put F on the left of every 
tableau t” s.t. t‘ S t”; in particular, on the left of t;, . . . , ti and of ti+l. Notice, 
however, that deg(F) 5 ni - 2 ,  by the same arguments as before. Further, of 
course, I) need not be the only formula put on the left of t by Y1 at this stage; but 
there are only finitely many such, and all have the properties assumed for D. So 
we can assume that say p new tableaux ti+l, . . . , tli have been added, where 
tl+i (2. = 1, . . . , p )  has a formula Ei on the right, with deg(Ei) m - 2. Further 
new formulae F are added on the left of t i , .  . ., ( and ti+l,.  . .,ti+,, with 
deg(F) 5 rn - 2 .  We can apply the rules to Ei and the F’s, perhaps obtaining 
some subformula o B on the left of ti (i = 1 ,  . . . , 1 + p ) ;  but here G is a sub- 
formula of Ei or an F ,  hence deg(n a) s m - 2 ,  so deg(a) 5 m - 3.  So the new 
formulae G which we put on the left of t’ have degree s m  - 3 .  Now we argue 
as we did before; new tableaux are started out, formulae are put on left and right 
of them, but now they all have degree 5 m - 4. Since the degrees involved de- 
crease by 2 at each stage, this iteration process cannot continue indefinitely. Even- 
tually, we shall stop, obtaining a situation where we have a tableau t‘, tableaux 
ti, . . . , t,’ with f‘ S t: (i  = 1, . . . , s), and where at no later stage can the ( affect 
t’ or each other. Then we can argue from here precisely as we did for the system M 
in the preceding paragraph. 

In fact, the argument we have given guarantees a stronger result, both for M 
and for the BRoowmsche system: Let A be a formula of ckgree m. Then the con- 

l) The introduction of D on the, left of t’ may also l e d  to applications of Ar to t’, thus split- 
tiag t‘ up into several new alternative tableaux. To simplify the present proof, we ignore this 
(clearly ineasential) possibility. 

I .  
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struction for A terminates. In fact, it either is closed, and hence A is valid, or it yield-r 
a finite tree countermodel for A ,  in which each branch of the tree is of length 4 m . I )  

Hence every formula is either provable or has a finite tree countermodel. - This fact 
is easily proved, by induction on m , using the methods of the preceding paragraphs. 

This result does no t  hold for the system 54. In fact, the preceding arguments 
all break down in S4, since Yl in S4 allows one to transfer CIA rather than just A ,  
when o A  occurs on the left. I n  fact, as K. J. J. RNTIKKA essentially pointed out 
to me, the formula - ( A  A 0 -A .v. -A A O A )  is not valid in S4, but it has 
no finite tree countermodel. (Try out the tableau procedure for it!) An equivalent 
example, which I have used in other connections, is - (OA A 0 -A) .  A counter- 
example to this would be a necessarily contingent formula. But in a finite tree 
model, no formula is evaluated as contingent on the endpoints of the branches of 
the tree (in fact on such endpoints, every true formula is necessary). Hence in 84, 
there are no necessarily contingent formulae on finite tree models. 

Thus in S4 we need another argument to show the decidability. In  fact, a rather 
traditional GENTZEN subformula argument will suffice. We will show that, although 
the construction can be infinite, nevertheless there is a certain stage et which the 
construction either closes, or terminates in a finite tree countermodel, or it is re- 
cognizable that the construction never will close. In fact, given a construction for 
a formula A ,  at every stage of the construction, in each of the tableaux of the alter- 
native sets in that stage only subformulae of A ean occur. Now the subformulae 
of A are finite in number. Further, if we regard a tableau as an ordered pair of 
sets of subformulae of A ,  it is clear that there are only finitely many tableaux 
(i.e., if A has a subformulae, there are 2n seks of subfomulae, hence ZBn pairs of 
sucli sets). Now suppose we are given a construction for A which is infinite (and 
therefore, not closed). Then, as in the proof of Lemma 2, section 3.2, there exists 
an infinite sequence Yl, Y2, . . . of non-closed alternative sets, each of which 
(except 9, , which corresponds to the first stage of the construction) is an immediate 
descendant of its predecessor. Since, as was shown above, there are only finitely 
many distinct tableaux which can occur in a construction for A, it follows $hat. 
there must be some Yj which is saturated; i.e., it has the property that for k > j, 
all the tableaux occurring in .Yk are equal to tableaux already occurring in SP,. 
(Here two tableaux are equal iff they contain the same formulae on both left and 
right; they need not be, however, identical, since they may have different positions 
in the tree structure.) Now suppose the construction is subjected to a modification 
defined as follows: We say that a tableau t' contains a tableau f iff every formula 
appearing on the left (right) of f appears on the left (right) of t'. 

Let a tableau t be introduced at the nth stage of a construction by Yr in an alter- 
native set 9. We call t repetitive iff there exists an rn < n ,  and a tableau ? in &. 

set 9' at the rnth stage of the construction, such that t' contains t ,  and such that 
tf st i l l  contains t at later stages, as long as no rules are applied to formulae occurring 
within f (although f may get additional formulae on the left as a result of Yl applied 

l) A branch with i + 1 points is said to be of length i. 
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to some other  tableau). It is clear that if f is repetitive at  the nth stage, this fact 
can be recognized (using an effective test) at  that stage; further it is clear that 
the rules subsequently applied to t will merely duplicate (be ‘(mirror images of”) 
rules applied to t‘. (In particular if a tableau t, is introduced by applying Yr to t , 
with t S t, , at some stage of the construction a tableau ti is introduced, containing t, , 
8. t. t’ S ti .) Hence, in order to see whether the construction closes, it is unnecemry 
to apply rules to t ;  anything that “happens to” t wil l  be duplicated by something 
that happens to t’. Hence we place the following restriction on all constructions: 
No rule i s  to be applied to a formula 0cc~rin.g in a repetitive tableau. 

The preceding discussion makes it clear that when the corlstructions are modified 
so as to conform to this restriction, they must terminate. For otherwise, as was 
shown above, there would be an infinite sequence Yl , 9,, . . . of non-closed alter- 
native sets; and this sequence would contain a “saturated“ term 9’f. But by the 
definition of “saturated”, for all k > j every tableau in .SP, is either the descendant 
of some tableau in 9, or is repetitive. Now there are only finitely many tableaux, 
my n in 9 j ;  then exactly n of the tableaux in any Y k  (k > j) are descendants of 
tableaux in 9,. Further, each of the n tableaux in 9, contains only finitely many 
formulae; and in fact, in any one tableau t there are only finitely many rules that 
can be applied to formulae in t until all formulae are decomposed into atomia aom- 
ponents. Hence under our new reduction the sequence Yl , Y2, . . . actually termi- 
nates at  some 9’h (h 2 j ) ,  contrary to the hypothesis that it is infinite. Hence, by 
WdUGtiO, the construction must be finite. This shows that the decision problem for 
54 is solvable also. 

Suppose we are dealing with an S4 construction, which is not closed, for a for- 
mula A. Then it still, however, must terminate; Fnd the last stage of the construc- 
tion must contain a non-closed alternative set 9’. Now 9 contains only finitely 
many tableaux. We wish to obtain, from the set 9, a countermodel to the formule A,  
by the techniques of Lemma 2, section 3.2; but since the rules heve not been applied 
to the repetitive tableaux of 9, the argument of that lemma no longer applies. 
This difficulty can be solved by “identifying” each repetitive tableau with a corre- 
sponding non-repetitive tableau. To put the mattet more exactly : the non-repetitive 
tableaux determine equivalence classes of tableaux as follows : every non-repetitive 
tableau is assigned to its own equivalence class. A repetitive tableau t is contained 
in an earlier tableau t’; this tableau t’ may itself be repetitive, but in this case it 
in turn is contained in an earlier tableau t”, etc. Eventually we find a non-repeti- 
tive tableau to containing t: we place t in the equivalence class dehrmined by to. 
(The choice of to need not be unique; but once it has been made, it places t in a 
unique equivalence class.) Then we take the set K to consist of all the equivalence 
classes of tableaux thus determined; G is the equivalence class containing the 
main tableau of the set. Given two equivalence classes HI and H,, in K, we 
say that H, R H, iff there exists tableaux t, and t, in H, and H,, respectively, 
with t, R t, . Finally, if Pis any propositional variable, and H E K , define # (P, H) = T 
iff there exists a tableau t in the equivalence class H with P on the left of t ;  
otherwise #(P, H) = F. Then it is easy to show, by the method of Lemma 2, 
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aection 3.2, that (G ,  K, R) is a model structure, and that @ is a countermodel 
to the formula A. 

It is clear that the preceding paragraph has shown that every form& A of S4 
is either derivable or has a finite countermodel. This result is weaker than the 
corresponding results for M and the BaouwIoRsche system, since the finite counter- 
model need not be a tree model. On the other hand, the proof of Lemma 2, section 
3.2, guarantees that non-derivable formula always has a countable tree countermodel. 
For 8ome formulae, like - o (A A 0 -A .v. -A A O A ) ,  either the finiteness or 
the tree structure must be sacrificed; we need not sacrifice both. In  fact (as we 
shall illustrate by an example but not prove), the modified version of construction, 
which disallows applications of rules to repetitive tableaux, gives us a constructive 
method for obtaining denumerable tree countermodels as well as finite counter- 
models. For example, to find a countermodel to the formula - ( A  A 0 -A .v. -A A OA)  , 

we apply a tableau construction (with the restriction on repetitive tableaux) 
which at  its last stage has an alternative set of the following form (abbreviating 
A A 0 -A .v. -A A O A  by X, v Xa):l) 

I) Here, if we wished, we could imagine “0” replaced by its definition “- 0 -”. But we 
have carried out the procedure as if  the rules Zl and Zr, dud to Y1 and Yr and essentially 
(using the definition of “0”) derived from them, were assumed: 
Zl. If 0 A appears on the left of a tableau t, start out a tableau t’, with A on the left, and f R t’. 
Zr. If O A  appears on the right of f ,  put A on the right of every tablew t’ s.t. f R t’. 

One of the beauties of tableau procedures is that independent rules can be given for any 
number of connectives so that the connectives are “independent’’ of each other. Notice that, 
if we are using both Y rules and Z rules in the same system, the relations R in both must of 
course be the same in order to derive such theorems as - - A  3 0 A.  We could introduce 
two relation R and R’, R for the Y rules and R‘ for the Z rules, and then - 0 - A  3 0 A would 
no longer hold. (In fact, it is easy to introduce a model theory for several 0 operators and seve- 
ral 0 operators, each with its o m  associated relation R; the different operators can even satisfy 
different reduction axioms, corresponding to different properties of these relations.) This fact 
hee apparently been overlooked in OHNISEI and MATSUMOTO [ll]. For both M and S4, their 
rules for necessity and possibility work in isolation but not when they are combined; in neither 
54 nor M (as formulated by the combined rules) is - - A  -P O A  provable. The revised 
rules for necessity in S4 (when both nedessity and possibility are primitive) should read: 

Similarly for Zl end Zr; and similarly for M. (The SS rules in [ll], lacking the Haupbatz, are 
lees interesting; cf. footnote 6.) 
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Here the tableau t8 is repetitive, being contained in tl . Now we can use the tableau 
diagram to obtain a finite countermodel, as in the preceding paragraph. In thh 
cam, we “identify” t, and t8, placing them in a single equivalence class G .  Thus 
we have a model structure, consisting of a set K with two elements G and H, with 
R holding between any ordered pair of elements of K. A model 0 is defined on the 
model structure (G , K , I?) by taking A as a propositional variable and stipulating 
that @ ( A ,  G )  = T and @ ( A ,  H) = F. This is clearly a finite countermodel to - ( A  A 0 -A .v. -A A O A ) .  On the other hand, it is equally possible to inter- 
pret the diagram so that it yields a tree countermodel. Let us take a countable 
set K with elements Hi indexed on the positive integers. “G” is another name for 
H,, and Hi R Hi iff i 5 j. On the model structure ( G ,  K ,  R) we define a model 
@ by @ ( A ,  H) = T if n is odd, and @ ( A ,  H) -- F if n is even. Then @ is a de- 
numerable tree countermodel to - n ( A  A 0 -A .v. -A A O A ) .  Further, it is 
easy to see how this model was obtained from the diagram. Instead of identifying 
fl and t,, we noticed that in a construction without  restriction on repetitive ta- 
bleaux, the same rules would apply to t, as to il ,  thus producing a tableau t, like t2, 
which in turn gives rise to a tableau tb like t,, etc. To every such tableau t, we 
correspond a world H,, thus obtaining the countermodel in question. 

Analogous arguments yield the result that every non-derivable formula of S5 
has a finite countermodel, and that S5 is decidable; essentially this result is already 
in [l]. The finite countermodels for S 5  are automatically tree countermodels, 80 

56 enjoys the strong property of M and the BRonwERsche system that every for- 
mula is either derivable or has a finite tree countermodel. 

The decision procedures may have seemed onerous from their description, but a 
little practice will verify that they are no more tedious than the usual decision 
methods for classical propositional logic, and that they are the simplest decision 
procedures in the literature for modal logics. 

5.2. Matrices, f ini te  and  infinite 

It is usual in propositional calculus to obtain independence and non-derivability 
results by the use of finite many-valued truth tables, PRIOR, in his [14], has given 
us a method of interpreting such matrices in terms of possible worlds. We apply 
and extend his method to the present semantical analysis. 

Given a model Atructure ( G ,  I(, R ) ,  we define a proposition (or perhaps more 
accurately, modal value of a proposition), as a mapping whose domain is K and 
whose range is the set {T, F} .  (Intuitively, a proposition is something that can be 
true or false in each world; and, for our present purposes, we identify propositions 
that are strictly equivalent, i.e., have the same truth-value in each world. Without 
the identification of strictly equivalent propositions, the term “modal value of 
a proposition” would be better). Notice that each proposition determines a unique 
set of worlds (the set of all worlds mapped into T), and that conversely each set 
of worlds determines a proposition (its “characteristic function”). Thus a proposi- 
tion could just as well have been defined simply as a subset of K. 
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Now a model is a function Qi, mapping ordered pairs (P, H) into truth values, 
where P is a propositional variable and H E K. For fixed P, the model Qj deter- 
mines a singulary function 1 H @(€‘, H ) ,  mapping elements of K into truth-values; 
i.e., it  determines a proposition. Thus a model can be viewed as a function mapping 
formal propositional variables into propositions. 

If e and a are propositions (i.e., for H E K, e(H) and o(H) are truth-values), 
we define e A (T as the proposition such that e A a(  H) = T iff e (H) = o( H) = T; 
stherwise e A a( H) = F. Further, -e is defined by -e (H) = T iff e (H) = F, other- 
wise -e(H) = F. (More compactly, assuming A and - defined on truth-values in 
the obvious manner, (e A a) (H) = e(H) A a ( H ) ,  ( w e )  (H) = -(e(H)). If we con- 
strue e and a alternatively as subsets of K , e A a is the intersection of e and a ,  while 
-e is the complement in K of e .) Finally, define e by (0  e) (H) = T if e (H’) = T 
for all H’ with H R H’; otherwise (0  e) (H) = F. Notice then that if a model @ 
maps the formulae A and B into the propositions e and u,  then by the previous 
definition given for models it maps A A B into e A o, -A into - e ,  and o A  into 
0 0 .  

Now if K has finitely many elements, say n ,  then there are exactly Z1’ proposi- 
tions in the model structure (G, K, R) .  We can label these by integers 1 , 2,  . . . , 2n, 
and set up “many-valued truth tables” for the operations A,  N, and 0, (indicating 
for each propositions e and a what propositions e A u , - e , and e are). If e (G) = T, 
we call e a “designated value.” For example if K = {G,  H}, viewing propositions 
as subsets of K let 1 = {G, H}, 2 = {G}, 3 = { H}, 4 = empty set. Then 1 and 2 
are designated. If R is reflexive and G R H but not H R G ,  the matrix thus ob- 
tained is Group I1 of [4] ; if R relates every ordered pair of elements of K, the result- 
ing truth-table is Group I11 of [a]. I n  the first case, since R is transitive but not 
symmetric, the matrix satisfies S4 but not S5; in the second case, where transitivity 
and symmetry hold, the matrix satisfies S5.  

Generally, then corresponding to  each finite model structure (G , K , R) we get 
a finite many-valued matrix which satisfies the appropriate modal system. Further, 
this matrix is normal in the sense of CHURCH [20]. Now in the preceding section 
it was shown that every non-derivable formula of each of our modal systems haa 
a finite countermodel. If we translate this countermodel into a normal matrix for 
the modal system, we see that every Eormula is either derivable or has a non- 
designated value in some finite normal matrix satisfying the axioms of the system. 
This property has been called the “finite model property’’ (cf. [21]). 

Of course the restriction to finite sets K is inessential to  the construction we have 
outlined; if K has n elements, finite or infinite, the proposi’ions of (G , K ,  R) form 
a matrix of 2n elements. 

Now consider a countable set K with a tree relation S ;  the relation S is to be 
constructed so that for each H E K, there are denumerably many H’E K a. t. H S H’. 
Then let (G , K , R )  be the tree model (for the appropriate modal system) generated 
by the relation S .  Then it can be shown that (G ,  K, R) is a “universal” model 
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structure in the following sense : any non-derivable formula A has a countermodel 
@ in ( G ,  K ,  R ) .  In  fact, for M, 55, and the BRouwERsche system we have shown 
that every non-derivable formula has a finite tree countermodel. Let the finite tree 
model structure of this countermodel be (GI, K’, R’) ,  let S’ be the tree relation 
generating it, and let 0‘ be the countermodel to A.  We define a function x, map- 
ping K into K’ (intuitively, “identifying” elements of K with their images in K‘) 
thus: x(G) = G’. If x(H) = H’ has already been defined, let H, (i : 0 ,  1 , 2 ,  . . .) 
be the countably many elements of K such that H S H,, and let Hi, . . . , Hk be 
the finitely many elements (n = 0 if there are none) of K’ such that H‘ S HI. 
Define x(H,,) = H’, x(H,) = H: (1 5 i 5 a), and x(H,) = H’( i>  n) .  Thcn x has 
been inductively defined ; and we define a countermodel @ to  A in (GI K , R) by 
@ ( P ,  H) = @‘(P,  x(H)). Then @ is a countermodel to  A if @’ is. 

A method similar to that outlined in the previous section for obtaining repetitive 
countermodels suffices to  show that an 54  model structure generated by the tree 
of the preceding paragraph is “universal” for S4. (The proof will not be given here.) 

Now the set K of the universal model structure is denumerable; and hence it 
contains continuously many propositions; so each of the four modal systems has 
a characteristic matrix of the cardinality of the continuum. In fact, however, we 
need only include in the matrix those propositions used for eountermodels. Thus, 
e.g., for all systems except 54, we need only consider those propositions which are 
of the form e(H) = e’(x(H)), where 9’ is a proposition defined on a f i n i t e  model 
structure, and x is the mapping of the preceding paragraph. Since there are only 
denumerably many propositions of this form (and the same fact can be verified 
for S4), it follows that each of the systems considered has a denumerable characte- 
ristic matrix. 

The characteristic matrices, either of the cardinality of the continuum or the 
denumerable ones, just defined are all normal. Hence none of the systems we con- 
sider can be unreasonable in the sense of HALLDBN [16], since HALLDBN’S paper 
shows essentially that no system with his “bad” property can possess a normal 
characteristic matrix. 

One additional comment: In  [I], an extended notion of “two-valued truth- 
table”, based on the model-theoretic considerations, was introduced for S 5. Essenti- 
ally the corresponding notions for M and 54 were given by ANDEESON [13] (except 
that the reductions to  normal form appear unnecessary). 

5.3. A p r o p e r t y  of M and  54 

As an example of the power of the present semantical techniques, we derive the 
following property of M and 54, previously known from algebraic arguments of 
MCKINSEY-TARSKI [15] and LEMMON [18]: If o A  v u B is derivable, then eifher A 
OT B is derivabb ( a d  h e w ,  by R2, either o A  or o B  is derivable). For suppose 
neither A nor B derivable ; then let @ and @’ be countermodels t o  A and B , defined 
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on the model structures (G , K , R) and (G , K‘, R’) respectively. Clearly we can 
assume that K and K’ are disjoint. Define a model structure (G”, K”, R”) ,  where 
G” E K ,  G” B K’, K” = K u K’ v { G”}, and for H,, H, E K”, H, R” H, iff either 
a) H,, Ha E K and H, R H, or b) H,, H, E K’ and H, R’ H,, or c) H, = G”. Then 
R” is reflexive, and is transitive if R and R’ are (using the disjointness of K and K’). 
(Note that this statement would no t  hold for symmetry.) So (G”, K”, R”) is a 
model structure for the appropriate system. Let @” be any model in (G”, K”, R”) 
such that @”(P, H) = @(P, H) for H E K,  and @”(P, H) = @’(P, H) if H E K’. 
(Since K and K’ are disjoint, there exist maps @” satisfying these conditions.) 
Now we verify by induction that H E K ,  @”(C, H) = @(C, H) for every formula. C .  
For if C is atomic then this is part of the definition of @”. If C = D A E or C = ND , 
the inductive step is easy. If C = D , and the statement has been verified for D, 
then if @(D, H’) = T for all H’ with H R H’, then @(C, H) = T; otherwise 
@(C, H) 5 F. But @ ( D ,  H’) == @”(D,  H’) by hypothesis. If H E K ,  conditions b) 
and c) cannot hold (with H = H,, H’ = Ha), so that H R” H’ if and only if H R H’. 
So @(C, H) = T iff @”(C, H) = T; i.e., @(C, H) = @”(C, H). Q.E.D. Similarly, 
if H E K’, @”(C, H) = @’(C,  H). Hence in particular, since @ and @’ are counter- 
models for A and B ,  respectively, @ ” ( A ,  G) = @ ( A ,  G) = F, @”(B,  G’) = 
= @’(B,  G’) = F. Since G” R” G ,  we have hence @ ” ( o A ,  G) = F; similarly 
since G” R G’, @” ( 13 B , G”) = F. Hence 0’’ ( o A  v B , G”) = F, and @” is a 
countermodel to o A  v B .  So if neither A nor B is provable, D A  v 13 B is not 
provable; so the desired result follows. 

The result fails for 55  and the BRouwERsche system. In fact, in both systems 
the BRouwERsche axiom A 3 O A  holds. Putting OB for A ,  we get O B  3 0 OB.  
Equivalently -B v 0 O B  is derivable, but clearly neither -B nor 0 OB 
is derivable. 

6. Other systems 

Consideration of various non-normal systems is reserved for another paper. 
PRIOR’S Q (cf. [14]), and similarly constructed modifications of the systems considered 
in this paper, are better motivated by a consideration of quantification theory, 
and hence are reserved for a paper on quantified modal systems. An example of 
a system between S4 and S5 is the System 54.3 of [21], obtainable by adding 
the scheme 0 A A OB .I. 0 ( A  A OB) v 0 (B  A 0 A )  to S4. Model-theoretically, 
this amounts to a requirement on a S 4-model-structure (G , K , R )  that if H , H’ E K,  
then either H R H’ or H’ R H . Other systems formed by imposing various require- 
ments on R can easily be constructed by consideration of [ll], Theorem 3.5. 

If we were to drop the condition that R be reflexive, this would be equivalent 
to abandoning the modal axiom CIA 3 A .  In  this way we could obtain systems 
of the type required for deontic logic. 
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