Uninterpreted Frames and Binary Relations

An uninterpreted frame is a pair $\langle W, R \rangle$ where W is a nonempty set and R is a binary relation on W. A formula of a language for the modal sentential calculus is *valid for* $\langle W, R \rangle$ iff it's true in every model $\langle W, R, I, @ \rangle$.

R is reflexive iff every formula in KT is valid for $\langle W, R \rangle$. **Proof:** (\Rightarrow) follows from the fact that KT is valid for every reflexive model. (\Leftarrow) Suppose $w \in W$ and not w R w. Pick an atomic sentence α and define I so that $I(\alpha, v) =$ True iff $v \neq w$. α is true in every world accessible from w, so $\Box \alpha$ is true in w, even though α isn't treu in w. So ($\Box \alpha \rightarrow \alpha$) isn't true in $\langle W, R, I, w \rangle$.

R is transitive iff every formula in K4 is valid for $\langle W, R \rangle$ **Proof:** (\Rightarrow) follows from the fact that K4 is valid for every transitive model. (\Rightarrow) Suppose w, v, and u are in W, with w R v and v R u, but not w R u. Pick α and define I so that I(α ,t) = True iff w R t. $\Box \alpha$ is true in w. α isn't true in u, so $\Box \alpha$ isn't true in v, so $\Box \Box \alpha$ isn't true in w. So ($\Box \alpha \rightarrow \Box \Box \alpha$) isn't true in $\langle W, R, I, w \rangle$.

This follows immediately:

R is reflexive and transitive iff every formulain KT4 is valid for <W,R>.

R is Euclidean iff every formula in K5 is valid for $\langle W, R \rangle$. **Proof:** (\Rightarrow) We already know that K5 is valid for every Euclidean model. (\Leftarrow) Suppose that w, v, and u are in W, that wRv and wRu but not vRu. Define I so that α is true in u only. Then $\Diamond \alpha$ is false in v, so $\Box \Diamond \alpha$ is false in w, even though $\Diamond \alpha$ is true in w. So ($\Diamond \alpha \rightarrow \Box \Diamond \alpha$) is false in $\langle W, R, I, w \rangle$.

We get similar results for every normal modal system obtained by adding one or more of (T), (4), (B), and (5) to K.