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The text below is the translation of an 
address delivered in German on 21 Sept
ember 1923 at the annual convention 
of the Deutsche Mathematiker-Vereinig
ung in Marburg an der Lahn. It had 
been delivered in Dutch at the 22nd 
Vlaamsch Natuur- en Geneeskundig Con
gres, in Antwerp in August 1923, in an 
approximately similar form (Brouwer 
1923a). 

§ 1 shows how the principles of logic, 
which have their origin in finite mathe
matics, came to be applied to discourse 
about the physical world and then to non
finite mathematics; but in that last field 
there is not necessarily a justification for 
each of these principles. In particular, 
such a justification seems to be lacking 
for the principle of excluded middle and 
that of double negation. 

§ 2 shows how several important re
sults of classical analysis become unjusti
fied once the principle of excluded 
middle is abandoned. Here Brouwer's 
critique is essentially negative, being 
based on counterexamples to classical 
theorems ; but elsewhere he investigates 
which fragments of the Bolzano-W eier
strass theorem can be preserved in intui
tionistic analysis (1919, sec. 1, and 1952a; 
see also Heyting 1956, arts. 3.4.4 and 
8.1.3) and gives an intuitionistic form of 
the Heine-Borel theorem (1926a and 
192(fb.; see also Heyting 1956, art. 5.2.2). 

theorems of classical analysis in B 
1928a. TOIi 

§ 3 is an example of the "splitting 
a classical notion, that of a convergei 
sequence, into several overlapping 
distinct intuitionistic notions, here 
tively convergent sequence, negat1 
convergent sequence, and nonoscilla· 
sequence. These notions were further 
vestigated by one of Brouwer's disci 
M. J. Belinfante, and we refer the 
to Belinfante's papers listed below 
630. In order to avoid a numbe: 
complications that ari::,e in the theo 
infinite sequences as elabora~ 
Brouwer and Belinfante, J. G. D•J 
found it convenient (1948) to int 
the notions of strictly negatively co 

·ti· non 
gent sequence and of stnc ) 
ting sequence. . 

Two notes "Addenda and con:• 
and "Furthe~ addenda and com 

. 1954 are 
published by Brouwer Ill : refl, 
ded to the 1923 paper. The~dAaQ 's I.,_. 
development of Brouwer a,in 
intervening years. In 

th
e /~n· 

below (1923b) Brouwer }lil d jini' 
an infinite sequence whose :c a 

rence 
pends upon the occur . tb 

. f d' its in finite sequence o ig ·nt· 48 he I . 
expansion of 7T, In 19 

11ce 
infinitely proceeding se:~:thel' 
nition depends upon b&S, 
mathematical proi:::n t; 

PRINCIPLE OF EXCLUDED MIDDLE 3:J 

1948b, 1949, 1949a, 1950, 1950a, 195. 
and 1952a) . It is in these conditions ths 
he came to write the two appendice: 
1954 and 1954a; 1954b and 1954c const 
tute a sequel to 1954a. 

tical assertion that so far has 
,tbe::tested, that is, such that neither 
,t bt' _, a has been proved ; then, if 

nor_, 
a the choice for Cn - 1 and the 

,t'l\·een t· b' . for en "the crea mg su Ject has 
,ot~enced either the truth or the ab

~ty of a" (1948, p. 1246), a certain 
e is chosen for Cn; otherwise, another 

i:e is chosen for Cn. This method of 
:fjnition, by which the choices for the 

ituents of an infinitely proceeding 
uence "may, at any stage, be made 
depend on possible future mathemati-
experiences of the creating subject" 

1SJ, p. 2), allowed Brouwer to offer 
w counterexamples to classical theor

in particular in analysis (1948a, 

§ 1 

The translation of the main papE 
(1923b) is by Stefan Bauer-Mengelbe1 
and the editor, and it is printed here wit 
the kind permission of Professor Brouw« 
and Walter de Gruyter and Co. The fir1 
appended paper (1954) was translated b 
Stefan Bauer-Mengelberg, Claske l\ 
Berndes Franck, Dirk van Dalen, aIJ 
the editor; the second appended pap, 
(1954a) was translated by Stefan Baue 
Mengelberg, Dirk van Dalen, and tl 
editor. 

Within a specific finite "main system" we can always test (that is, either pro, 
reduce to absurdity) properties of systems, that is, test whether systems can l 

lll&pped, with prescribed correspondences between elements, into other systems ; f, 
mapping determined by the property in question can in any case be performE 
,nJy a finite number of ways, and each of these can be undertaken by itself ar 

PIUlued either to its conclusion or to a point of inhibition. (Here the principle , 
.ematical induction often furnishes the means of carrying out such tests witho1 
dual consideration of every element involved in the mapping or of eve1 
le way in which the mapping can be performed; consequently the test even f, 

'
1118 \\ith a very large number of elements can at times be performed relative 
,y,) 
th

e basi~ of the testability just mentioned, there hold, for properties conceivE 
,): :cific finite main system, the principle of excluded middle, that is, tl 
pa ~t for every system every property is either correct [richtig] or impossibl 

C
.rt

1
icular the principle of the reciprocity of the complementary species, that i 

· 1P e th t £ hilit a or every system the correctness of a property follows from tl ,re/ of the impossibility of this property. 
en a7ple, the union @5(p, q) of two mathematical species1 p and q contains 

Clise: ements, it follows on the basis of the principle of excluded middle (whi, 
nts Ppears as "principle of disjunction") that either p or q contains at lea 

'if We h 
lllteg ave proved in elementary arithmetic that, whenever none of tl 
tlot ~rs_ ~1, a2, ... , an is divisible by the prime number c, the product a1a2, 

the \risible by c either, it follows on the basis of the principle of the re1 
llllJn~omplementary species that, if the product a 1 a 2a 3 ... an is divisible l 

er c, at least one of the factors of the product is divisible by c. 
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For properties derived within a specific finite main system by 
ciple of excluded middle it is always certain that we can arrive rneans oft: 
corroboration if we have a sufficient amount of time at our disp at their e 

. osal 
It 1s a natural phenomenon, now, that numerous objects and · 

world of perception, considered in relation to extended complexes ~;chanisrna 
can be mastered if we think of them as (possibly partly unknown)ofin~cts and 

1te di 
terns that for specific known parts are bound by specific laws of te se 
tion. Hence the laws of theoretical logic, including the principle 0;?~\al con, 
are applicable to these objects and mechanisms in relation to the resp xct_Uded ec IYe c, 
of facts and events, even though here a complete empirical corrobor . 
inferences drawn is usually materially excluded a priori and there caation 
question of even a partial corroboration in the case of (juridical and othe~~t 
about the past. To this incomplete verifiability of inferences that are ne:~ 
considered irrefutably correct, as well as to our partial ignorance of the re 
finite systems and to the fact that theoretical logic is applied more often an: 
people to such material objects than to mathematical ones we must probabl 
bute the fact that an a priori character has been ascribed to the laws of th 
logic, including the principle of excluded middle, and that one lost sight 
conditions of their applicability, which lie in the projection of a finite di~rrete 
upon the objects in question, so that one even went so far as to look to the 
logic for a deeper justification of the completely primary and autonomous 
activity [Denkhandlung] that the mathematics of finite systems represents. 
ingly, in the logical treatment of the world of perception the appearance of a 
diction never led us to doubt that the laws oflogic were unshakable but only to 

and complete the mathematical fragments projected upon this world. . 
An a priori character was so consistently ascribed to the laws of theoreti, 

that until recently these laws, including the principle of excluded middle, ~-ere 

without reservation even in the mathematics of infinite systems and we di~ 
ourselves to be disturbed by the consideration that the results obtained m noui-r 
are in general not open, either practically or theoretically, to any empi~i~;I: 
tion. On this basis extensive incorrect theories were constructed, e~pecin y te 

. . 1 tedlv encoun . 
half-century. The contradict10ns that, as a resu t, one repea · ... th 
· h 1: l" · · · · · h" h · ce comes to tlu~-nse to t e J orma istic critique, a critique w ic m essen · ati 

. . l . . . b. t d to a ma them 
accompanying the mathematical menta adivity is su iec e t the 

· 1 l · resen 
nation. To such an examination the laws of theoret1ca ogic P ·. . If 

. d ets h1m~e 
operators acting on primitive formulas or ax10ms, an ~n~ s ~ t of th 
transforming these axioms in such a way that the linguist10 e ec . be (list' 

. . . d) no longe1 
ment10ned (which are themselves retamed unchange can db , no JUC· 

the appearance of the linguistic figure of a contradiction. We ne~ll t~u~ be 
of reaching this goal,2 but nothing of mathematical value wi ·adiction 
incorrect theory, even if it cannot be inhibited by an~ c~ntr~ne the l 
refute it, is none the less incorrect, just as a criminal policy ~s n 
even if it cannot be inhibited by any court that would curb it. 

2 For the unjustified application of the principle of excluded. 1:~~~: i;J,o~ro 
constructed mathematical systems can never lead to a contradictio 
or 1919a, p. 11]). 
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§2 

fundamental properties, which follow from the principle of 
II wing two · · 'fi .,. h" · t "l · l" th fo 0• have been of basic sigm canoe 1or t 1s mcorrec og10a ma e-
~11~~e; ("logical" because it makes use of the principle of excluded middle), 

fintin J theory of real functions (developed mainly by the Paris school): 
Iy for the de d · · 3 . ., the continuum form an or re point species; 

po111ts OJ • • h fl · · ,f: 't 4 th rnatical species is eit er nite or inrni e. 
ry 111

'.
1 

e xample shows that the first fundamental property is incorrect. 
following e d · 1 · · h d · 1 · f th digit to the right of the ec1ma pomt mt e ec1ma expansion o 1r, 

be the v · f · · 1 ·tt ·t h 
,n = kn if, as the decimal expans10n o 1r 1s progressive ! wn . en, 1 app~ns 

he nth time that the segment dmdm + 1 •.. dm + 9 of this decimal expansion 
t:e\equence 0123456789. Further, let Cv = (-½Jk1 if v ~ k1, otherwise _let 
_ ½l'; then the infinite sequence c1 , c2 , c3 , ••• defines a real number r for wluch 
,(the conditions r = 0, r > 0, or r < 0 holds.5 

,n the first fundamental property ceases to hold, the Paris school's notion of 
,), the notion of L-integral, as it is called, ceases to be useful, because this 
of integral is bound to the notion "measurable function" and, according to 
ve, not even a constant function satisfies the conditions of "measurability ". 
the case of the function f(x) = r, where r represents the real number defined 
the values of x for which f(x) > 0 do not form a measurable point species.6 

the second fundamental property is incorrect is seen from the example 
by the species of the positive integers kn defined above. 

,n the Recond fundamental property ceases to hold, so does the "extended 
ion principle", according to which, if a fundamental sequence of elements is 

,ed in the union <S(p, q) of two mathematical species p and q, either p or q 
a fundamental sequence of elements; and when the extended disjunction 
ceas_es to hold, so does the Bolzano-Weierstrass theorem, which rests upon 

~co~ng to which every bounded infinite point species has a limit point. 
ollowmg two theorems are less basic and simple than the fundamental pro
me~tioned, yet they are equally indispensable for the construction of the 

t eory of functions. 
ry continuous f ct. f ( ) d ,f: d . . . :m tL, . un ion x eJ.ne everywhere in a closed interval i possesses a 
• '«« 1s a b · 

.t tlui b ' n a scissa value x1 having a neighborhood ex such that f (x1 ) ~ f (x) 
l elongs to the intersedion of ex and i. 

if on th 
rnpossibt ~~e hand a < b either holds or is impossible, or on the other a > b either 
Orcii11g toe~h en _on~ of the conditions a < b or a > b or a = b holds. 

In the latt e principle of excluded middle a species s either is finite or cannot possibly 
. er case s pos 1 . . . . rn1e(d]e sesses an e ement, e1 ; for otherwise, on the basis of the prmc,ple 

.., • s could t ·b · '"Urtherrn no poss, ly possess an element and would therefore be finite, which 
':"'e&< an el ore .~ po~sesses an element, e2 , distinct from e1 ; for otherwise s would not 
111 this rna:rnent distinct from e1 and would therefore be finite, which is excluded. 
For the de;er,_ we show thats possesses a fundamental sequence of distinct elements 

• We can ttion of "fundamental sequence" see below, p. 455.] ' 
derived ta so define r by means of any other property x whose existence or impossi-
Poss,:.,,es or every definite positive integer, while we can neither determine a positive 
', the not_'!' nor prove the impossibility of x for all positive integers . 
further ~~n of R-integral, that is, the notion of Riemann integral, ca.n be applied to 

o. 
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The incorrectness of this theorem appears from the followin 
enumerate the irreducible binary fractions between O and 1 (exc1!~Xarnple: Ir 
means of a fundamental sequence 81 , 82 , ••• in the ordinary way, th t~ O and l 
fraction follows all those with a smaller denominator and fraction: is_, ao that 
denominator are ordered according to the magnitude of the numerat '"1~h the 
to k1 the same meaning as above, if by fn(x) we understand the funct·or, if We 

. ion that"-value 2 - n for x = Sn and vamshes for x = 0 as well as for x = I wh'l . .._. 
. , 1 e 1t re· 

lmear between x = 0 and x = 8~ as well as between x = Sn and x = I, and if ' 
!ln(x) = f n(x) for n = ki, otherwise !ln(x) = 0, then the continuous function We 

00 

g(x) = J; !ln(x), 
n=l 

which is defined everywhere in the closed unit interval, possesses no maxim 
2. (Heine-Borel covering theorPm.) If a neighborhood is assigned to et'eum. 

core7 of the point species A formed by the points and the limit points of a boundd 
point specie8 B, then the whole point species A can be covered by a finite number of 
neighborhoods. 

The incorrectness of this theorem appears from the following example: If we c 
for B the number sequence c1 , c2 , c3 , ••• , defined above, while we assign to the num 
c., for v ~ ki, the interval (c, - 2-k1 - 2 , c, + 2-k1 - 2 ), otherwise the inte: 
(c, - 2- •- 2 , c, + 2- •- 2 ), and to a limit point e (if any) of the sequence the in· 
(e - ½, e + ½), then A cannot be covered by a finite number of these neighborhoods.' 

In view of the fact that the foundations of the logical theory of functions 
indefensible according to what was said above, we need not be surprised that a 
part of its results becomes untenable in the light of a more precise critique. AJ 
example, we shall refute one of the best-known classical theorems in this do 
namely, the theorem that a monotonic continuous function defined everywhere 
"almost everywhere" differentiable, by constructing a monotonic continuous. 
tion that is defined everywhere in the closed unit interval but is nowhere differe~tla 

Let O ;.,; x1 < x2 ;.,; 1. By the elementary function corresponding to tM 'cl 
- - · the ' 

{x1 , x2 ) we shall understand the continuous function, defined everywhere 1Il 

unit interval, that, for x1 ~ x ~ x 2 , is equal to 

X2 - X1 sin 21r ..:.. - X1 

21r X2 - X1 ~ 
, ,,, ,.\"' we shall 

and, for O ~ x ~ x1 and x2 ~ x ~ I, is equal to O; by ,.\ , /\ , ' · · ·. t ers) beI 
't' m eg stand the intervals (a/2n, (a + 2)/2n) (where a and n denote posi ive d by 

y· an 
ing to the closed unit interval and enumerated in the customary wa 'rtherJJ'.IOI 

. . t ,.\<n> Fu we shall understand the elementary funct10n corresponding O • 

7 [ For the definition of "point core" see below, p. 458.] ·es Q is C)&lled_ 
8 [ "The species of the points that coincide with points of the P_?int spec;Q. A point 

completing [erganzende] point species or, for short, the completion [Ergan~un~p ~rottU'er J9l -
that is identical with its completion is called an entire [ganze] Punkts~ecies_. j vith ", P· ~
For the definition of "coincide" see below, p. 458, and for that of "~dent!~ 'ntere,caOlr-, 

9 Nor does the theorem hold for a closed bounded entire point species A. ou A if and 1 

for A a species of abscissas ( - 2)- • such that an abscissa ( - 2)-v belongs ~o a. natufll. 
nature.I number k1 satisfying the characterization above is known and_ v 

18 al as ill 
< l~ • than .,. • .,;+h nnnh ..,.1,-...,,..;..,...,,.. .f-hn+ ...v>.-. ..... 1-,,,...1,... ......... + .... ,1 ~--- ... : ... + ... +1-. ..... aQl'Y\A 1nterY____ 
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k the same meaning as above; we put g1 {x) = x and (for n ~ 2) !ln(x) = 
to 1 k otherwise !ln(x) = 0. Then the function 

for n"" 1
' 

00 

g = 1) !In 
n=l 

. c continuous function that is defined everywhere in the closed unit 
1110notoru . . 

t . nowhere differentiable. I bu is 

§3 

example illustrating the fact that even older and more firmly consolidated 
A, _an in the field of the mathematics of infinity are affected by the rejection of the 
~~e of excluded middle and the consequent rejection of the Bolzano-W eierstrass 
Clpm even if in much smaller measure than the theory of real functions, we take ,re ' 
notion of convergence of infinite series. 

Let us say that an infinite series u 1 + u2 + u 3 + · · · with real terms, for which 
sum of the first n terms is denoted by Sn, is nonoscillating if for every e > 0 it 
been established that it is impossible to have at the same time an infinite sequence 
positive integers ni, n 2 , n 3 , • • . increasing beyond all bounds and an infinite 
,ence of positive integers m 1 , m 2 , m 3 , ••. such that 

lsn,+mv - Snvl > e for every v; 

according to the classical theory on the basis of the principle of excluded middle 
1ch a nonoscillating series is : 

I. Negatively convergent, that is, there exists a real number s with the property 
,t for every e > 0 it has been established that it is impossible to have an infinite 
ience of positive integers n 1 , n 2 , n 3 , •.. increasing beyond all bounds such that 

Is - sn.l > e for every v; 

Bounded, that is, there exist two real numbers g
1 

and g
2 

such that 

!/1 < Sn < g2 for every n; 

, Poaitively wnvergent, that is, there exists a real numbers with the property that 
very e > 0 th · t ·t· · h th t • ere ex1s s a pos1 1ve mteger n. sue a 

Is - snl < e for every n > n 8 • 

Let aa:8 
now consider the following five nonoscillating series (where k

1 
again has 

e rneaning as above): 

u, :=e l/2n,. 
1 or every n· u, :=, 2 ' 

1/2•. + l/2n for n = ki, Un = -2 + l/2n for n = k1 + 1, otherwise Un = 
' u, - n 

1/2\ + l/2n for n = ki, un = -n + 1/2n for n = k1 + 1, otherwise Un = 
"•:=el,. 10r n = k otherwise u = I/2n · ~ 1, n , ......: nfor M 1---------------
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The series (a) turns out to be positively convergent and therefore al 
. . so negat· 

vergent and bounded; the series (b) to be negatively convergent a d 1V"e)y 

not positively convergent; the series (c) to be negatively convergent~ bounded 
and therefore not positively convergent either; the series (d) to be 'b ut not~ 
negatively convergent and therefore not positively convergent eith 

0
'.1°ded, hut 

er' these. 
finally, to be not bounded, not negatively convergent, and not positive! flea 

To illustrate the consequences of the distinction made above we shaii con~e: 
Kummer convergence criterion, which reads as follows : "If B B consider 

i, 2, ••. are nn.:. 
numbers and if, for the infinite series of positive terms r = u 1 + u + ~ 
have 

2 
ua + · ·· 

lim { Bn Un u~ l - Bn+1} > 0, 

then r is positively convergent". 
The proof of this convergence criterion is customarily carried out as followa. 
On the basis of what has been assumed we select M and k in such a way that & 

n ~ M, ' 

Bn ~l - Bn+l > k, 
Un+ 

Bnun - Bn+lUn+l > kun+l> 

Bnun - Bn+pUn+P > k(un+l + · · · + Un+p), 

Bnun 
Un+l + ... + Un+p < -k-, 

whence boundedness follows for the series rn = Un+i + Un+2 + · · · (n ~ M) 
therefore also for the series r = u 1 + u 2 + · . . . On the basis of this boundedn• 
series r is then declared to be not only nonoscillating, which is permitted for a 
of positive terms, but also positively convergent. 

The last inference, however, rests upon the Bolzano-Weierstrass theorem • nd • 
be rejected along with it. . 

Pringsheim (1916, p. 378) offers an altogether different and more inst~~tive ! 
After he has proved the positive convergence of r for the case of the positive .. 
gence as well as for the case of the positive divergence of b = l/B1 : _ I/B2 ;ve: 
assumes that the series b must be either positively convergent or positively 
and for this reason he declares that the general criterion has been prove\ Bo 

But the assumption mentioned is inadmissible ; for it, too, rests upon t e 

Weierstrass theorem. . criterioD 
It is worth noting, now, that Kummer himself expressed (1835) his ndit,iall T y co 

with the auxiliary condition lim' Bnun = 0 and that with this auXI iar. ·terioD 
positive convergence of the series r is actually ensured by the cri 
immediately evident from the proof above. . . n ,wjtbod 

That not only the derivations of the Kummer convergence c~it~rioorrect ii 
auxiliary condition are inadequate10 but also the criterion itself is inc o£ 

10 The inadequacy of these derivations, in contradistinctiun to the co_rr;::: to 
originally carried out by Kummer himself for the restricted criterio1_1, ~as mf el'chJ(leCI, 
student M. J. Belinfante as an example of the significance of the principle O J 
the theory of infinite series. 
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. (d) above, which is neither positively convergent nor negatively conver
tla8 seri~; e determine the successive Bn for this series from the relations 

for, i w 

• B = 4 and Bn ~l - Bn + 1 = 1 for every n, 
1 Un+ 

out to be positive, so that the extended convergence criterion is satisfied 
B. ~u;;ugh positive convergence does not exist. This omission of the Kummer 

. _ t condition, which took place after Kummer and was prompted by Dini, has 
oo'!'siderably curtailed the scope of the convergence criterion in question . 

ADDENDA AND CORRIGENDA 

(1954) 

Jeprtling my paper "Over de rol van het principium tertii exclusi in de wiskunde, 
)let bijzonder in de functietheorie" (1923a), published thirty years ago in volume 2 
lfi,. en Natuurkundig Tijdschrift, which has since been discontinued, I would now 
to make the following remarks. 

L Page I, line 4 [above, page 335, line l ], the term "to test" [" toetsen" (1923a), 
prftfen" (1923b)] is used for either proving or reducing to absurdity. In subse
t intuitionistic literature, however, a property of a mathematical entity is said 

be "tested" if either its contradictoriness or its noncontradictoriness is ascertained, 
judged" [" geoordeeld "] if either its presence or its absurdity is ascertained. 

D. Page 3, footnote(*) [above, page 336, footnote 2], the noncontradictoriness of 
lications of the principle of excluded middle to the attribution of a property E to 
ll-constructed mathematical system was pointed out. In subsequent intuitionistic 
.ture, however, it became apparent that for the simultaneous application of the 

eiple mentioned to the attribution of a property E to each element of a mathe
~ species S noncontradictoriness remains ensured only for finite S. For infinite 

III. llllnultaneous attribution mentioned can very well be contradictory. 
_Page 3, footnote (****) [above, page 337, footnote 5], for the construction, 
ID. the text, of a real number r for which none of the relations r = 0, r > 0, 

'~ O holds, we allowed every property x for which neither a finite number 
ll1iat ~ x nor the impossibility of x for every finite number is known. To this 

P add the condition that x can be judged for every finite number. 

111 age 4, line 18 up [above, page 338, line 12], the classical Heine-Borel covering 
• Was formulated for an arbitrary "closed" bounded point species. The intui-
c Criti · 

ti que of this theorem that follows there should have been preceded by an 
~n °~ the intuitionistic splitting of the classical notion "closed". For, if in a 
by or in a "located" [" afgebakende "] compact topological space R we under-
111a/ core the species of the points that coincide with a given point, by an 
!y ion core of a core species Q a core of which every neighborhood contains an 

1 !roceeding sequence of cores of Q that are mutually apart, and by a limit 
t thre species Q a core of which every neighborhood contains a core of Q, if we 

'°1'e at a core species Q containing all of its accumulation cores is a-closed and 
llni species Q that contains all of its limit cores is {3-closed, if, accordingly, we 
L -On of a core species Q and its accumulation cores the a-closure of Q and the 
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species of limit cores of Q the {3-closure of Q, if we take the formulatio . ·' 
of the classical Heine-Borel covering theorem as applying to " closed,,~ cited ._ 
species Q, then this formulation is intuitionistically correct only if by" cl 

0 llndecl 
OSed"· 

"/3-closed" and if, moreover, Q is a core species located in R, that is to 
8 

• 18.n. 
every core of R at a distance that is computable with unlimited accura ayln, it 18 frQ cy. n. ... 
lar, therefore, with regard to the number sequence c1 , c2 , c3 , ••• referred t .,_,. 
line 13 up [ above, page 338, line 17], which is bounded and is located in ~:n PIiat 
continuum, the classical covering theorem is intuitionistically valid ont n
{3-closure, that is to say, for its union with its limit number, but not for its y for 
referred to on page 4, line 13 up [ above, page 338, line 19], that is to say, for::
with the number 0, if this number should turn out to be identical with the limit 11111 

Nor is the classical covering theorem intuitionistically valid for number core"'• 
that a~e /3-closed and bounded but not located_in th~ number continuum, as, fore:::.,""
the umon of the number cores p 1 , p 2 , p 3 , .•• , m which Pv = 1 for v < k1 and p, • - I 
for V ~ k1, 

V. The example given on page 5, lines 1-13 [above, page 338, line Su, topageaj 
line 5], of a monotonic, continuous, nowhere differentiable function defined 8'11 

where in the closed unit interval possesses these properties exclusively as a funell 
of the (classical) continuum of approximations made according to a law, n°' 
function of the (intuitionistic) continuum of more or less freely proceeding &pplll 

mations. A connection between monotonicity and differentiability of full funall 
of the intuitionistic continuum can be found in my 1923, p. 24. 

FURTHER ADDENDA AND CORRIGENDA 
(1954a) 

With reference to point V of my 1954, pp. 104-105 [above, pp. 341-342], I 
below an example of a continuous, monotonic, nowhere differentiable, real,jvJl,. 
of the intuitionistic closed unit continuum K. 1 Cclli 

For a natural number n we understand by x,.(x) the real function of K that flllj 
"even n-cores " 2 x = a/n (a being an integer and O ~ a ~ n) is equal to O, Jl 
"odd n-cores" x = (2a + l)/2n (a being an integer and O ~ a ~ n) is equ;.tlt> · 
and for every a (0 ~ a ~ n) is linear between x = a/n and x = (2a + l)/ s • 
as between x = (2a + 1)/2n and x = (a + 1)/n.3 Further we put _ifi;(x) == .,_ 
n ~ 2, f being an opaque fleeing property and K 1(j) being its critical nUdl 

. . . . . ,, see beloW, PP· • 
1 [For the definitions of "contmuous ", "full", and "umt continuum 

see also Brouwer 1953, p. 3, line 2u, top. 4, line 6.] _ 3 line,. 
2 [For the definition of" core" see below, p. 458; see also Brouwer 19v3, P· ' 

line 6.] unobJ 
3 [From the intuitionistic point of view the definition of x.(x) does not seern 

see Remark in 2.2.8 of Heyting 1956, p. 27.] . ro[Jd'Y if' 
4 [" We shall call a hypothetical property/ of natural numbers a fleeing P 

the following conditions: h roper't 
(1) For each natural number it can be decided either that it possesses t e p 

cannot possibly possess the property/; ro 
(2) No method is known for calculating a natural number possessing 

th
e ~Y /ii 

(3) The assumption of existence of a natural number possessing the prope 
lead to an absurdity. 

In particular, a fleeing property is called opaque if the assumption of 
8 
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_ (x) if n = K 1(j), otherwise ip,.(x) = 0. Then 
f,(:t) == Xn 

co 

ip(x) = .E 'Pv(x) 
v=l 

. ous monotonic, nowhere differentiable, real, full function of K. 
eontin~us~ take into account the possibility (ex) that at some time it turns out 

-one"• ';,ci(/) is nonexistent, so that, for all values of x, ip(x) possesses an ordinary 

. tive equal to 1. 
p rnust also take into account the possibility (/3) that at some time a natural 

9atone 
l,er ,n == K

1
(f) will be found. In that case ip(x) has, for all values of x that lie 

~ {rorn them-cores, an ordinary derivative, either equal to 3/2 or equal to 1/2; 
ell even m-cores x it has a right derivative (nonexistent for x = 1) equal to 3/2, 
a left derivative (nonexistent for x = 0) equal to 1/2; and for all odd m-cores x 
•• right derivative equal to 1/2 and a left derivative equal to 3/2, while for every 
lie of x the possibility must be taken into account that at some time it shall turn 
1either to be an m-core or to lie apart from the m-cores. 

Derefore, with respect to the existence of an ordinary derivative, or of a right and 
ft derivative, of ip(x) one must, for every value of x, take into account possibilities 

mutually apart, so that for no single value of x an ordinary derivative can be 
wl. 

IJ the nature of the case this function ip(x) is not "completely differentiable" in 
Nllse of Brouwer 1923, § 3, p. 20. 6 

far as the function g(x), mentioned in Brouwer 1923a, p. 5 [above, p. 339], is 
med, it must, according to the explanations that follow below, be abandoned 

~example of a continuous, monotonic, nowhere differentiable function, even for 
~l closed unit continuum Kr. 7 

§2 

• J;<•> we understand a closed ,),_C 4 v+1>.interval ;8 for v ~ 0, by an h<v> we under-
aJ;b> t· 1 . . en ire y or partially covered by K; further, after ordermg the hcv> for all 
of v in a single fundamental sequence9 8', 8", 8'", ... , to be called F, by a 

'Jloeae . . 
p. 161.ring f IS not known to be noncontradictory either." (Brouwer 1952, p. 141; see also 

..:;:-z tumber of a fleeing p,cp.,rty is apparently what Brouwer (1929a, p. 161) calls the 
r.] 

0 th
e property, that is, the (hypothetical) least natural number that possesses the 

~. llay th 
IIUch t:t [a number core] a lies apart from [a number core] b if there is some natural 

detinit· at lb - al > 2-•." (Brouwer 1953, p. 4.) See also below, p. 462, footnote lOa.] 
her 

1
~n of "completely differentiable" requires too many preliminary definitions to be 

iJar d~' we refer the reader to the passage indicated in the text.] 
llttorj::Ppearance of a counterexample, due to the disappearance of the absence of a 
Ilg P,-o rn, belongs to the realm of possibilities when one considers ,f,(x) simply for a 

~. · ~e:~,{;n · h · f · · ·t· · t· 1 b 42 uum 1s t e species o predtitermmate mtm 10ms 1c rea num ers; see ~,' ?] 14
2, bottom half of first column, and p. 143, top of first column, as well as 

detinition of " '< > . ] ~-. "' -mterval" see below, p. 457. 
,. it~of "fundamental sequence" see below, p. 455.] 
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unitary standard number we understand an infinitely proceeding seq 
. . . uenceio /J< 

0<ca>, ... 1n which, for every v, 0<c.> 1s an h<v> and 0<cv+ 1> consists e . 01 

points of 0<cv>. Then, the species of unitary standard numbers is idt~~ely of i 
species of accretion sequences11 of a dressed fan w, 12 of which we c n ical \\ith 

an say he 
every unitary number core, that is, every number core of K, coincides . h- ' 
standard number-that it represents K. WJ.t a Uni 

As a function of a variable number core x, either of Kr or of K g(x) 1· , snow oh 
as follows. 13 Let f be a fleeing property; let K 1 (f) be its critical numb 1 er; et 
qv be respectively the least and the greatest endcores of 0<v>; and let ( P 
continuous function of K" or of K, that for the part of 0<v> that belongs~~ k he 
K, is equal to "or 

qv - Pvsin2TT X - Pv 
2TT qv - Pv 

and, for x ~ Pv as well as for x ~ qv, is equal to 0. Then we put gv(x) = x for v 

gv(x) = <pv(x) for v = K 1 (f}, and gv(x) = 0 for all other values of v. Finally, we P' 

00 

g(x) = E gv(x). 
v=l 

If we call a 0<v> for which v = K 1 (f) the critical interval off and if we represent 
by i(f), then (at least for the current examples of F and f) not a single indicati 
at hand concerning the position of a possible i(f) ; therefore, it seems at the ou 
that for every x every possibility of obtaining a guarantee for the nonbelonging 
i(f) is lacking, and so is for every unitary finite binary fraction 14 x every possib 
of computing a ratio 1/3 for the lengths of the segments into which it would hav, 
divide a possible i(f) to which it would belong; therefore finally it seems that 
every x every possibility of computing an ordinary derivative is lacking. 

§3 

This situation, however, changes when one intends to make the infinitely P~ 
process of the creation, by free choices, of a unitary standard number ii ru~ pa ent 
the infinitely proceeding process of the successive judgments of the assign~ n 

. h t the creatio 
to the successive natural numbers and moreover to take care t a . 

· d · that·" 
cess of u continually lags sufficiently far behind the process of JU gmg , that 
mentioned to prevent contact with an i(f) that might possibly appear, so 0 

must come into existence a number core x of K for which g(x) possesses an 

derivative equal to 1. h t tbi 
Once this insight has been obtained, it is not far-fetched to observe~ : seq' 

indicated here, in which u comes to exist is at hand for all the accretio 
"infinite!)' . 

10 [ See the definition of " unbounded choice sequence" below, P· 446 ; olso 3.J.I, ill 
sequence" wos used in Brouwer 1952, p. 142, bottom of first column; see 
1956, pp. 32-34.] ... finitely 

11 [ " Accretion sequence" (" accretiereeks ") is here apparently used for in 
sequence in a dressed spread".] ph, 

12 [ For the definition of" dressed fan" see Brouwer 1953, p. 16, firRt puragro 
13 [The remark made in footnote 3 applies to the function g(x).] te 1 
14 rrn-~ .Ll-- .l-.C.-!-<-!--- -1" ".C-!.i..- L!----- J:'-~-.i.!~-" ___ L-1-.-. '""- d.fi7 . . footnO 
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ts of a subfan w' of w that is obtained from w by the deletion, from the 
e eieiJlen tituents15 that are admitted for the nodes of w, of a possible i(f), as 

f cons . . 
ie5 ° two ,\-intervals that are of the same length as i(f) and are partially covered 
oft~herefore, for every_ number _cor~ x of K that is represented by this dressed 
(f)· ) assesses an ordinary derivative. 

', g(x pof the same fan w' it is even possible to exhibit, for every natural number 
BY 111eansable core species Sn that is contained in K, has a content greater than 

weasur 
-,-•• and in which g(x) everywhere possesses an ordinary derivative. 16 For that 

- - blishes first of all for every n one of the following facts : either for v ~ n no 
es~interval off occurs among the h<v> or for some m ~ n a critical interval of 
:rs among the h<m>. Further, there is chosen for Sn, in the first case, the core 
es of K represented by w' and, in the second case, the species of the cores of K 
lie apart from the two endcores of i(f). If we further observe that the union of 

mfinitely proceeding sequence of the Sv forms a measurable core species that is 
itained in Kand has content I, then g(x) turns out to be a continuous, monotonic, 

full Junction of K that is differentiable almost everywhere. 
And since the predeterminate elements of w' represent number cores of K" Kr also 

poaesses an (everywhere dense, ever unfinished, and ever enumerable) core species in 
h g(x) is everywhere differentiable. 

the d 
the ;!ni~i?n of "constituent" see Brouwer 1953, p. 7 .] 
,-i.o Ii ni~ions of "measurable core species" and "content" see Brouwer 1919, pp. 

e11t1-- .. ,.,,--e.A_ ,,~~~ -


