On the significance of the principle of excluded middle in mathematics, especially in function theory

LUITZEN EGBERTUS JAN BROUWER (1923b)

The text below is the translation of an address delivered in German on 21 September 1923 at the annual convention of the Deutsche Mathematiker-Vereinigung in Marburg an der Lahn. It had been delivered in Dutch at the $22 n$ d Vlaamsch Natuur- en Geneeskundig Congres, in Antwerp in August 1923, in an approximately similar form (Brouwer 1923a).
§ 1 shows how the principles of logic, which have their origin in finite mathematics, came to be applied to discourse about the physical world and then to nonfinite mathematics; but in that last field there is not necessarily a justification for each of these principles. In particular, such a justification seems to be lacking for the principle of excluded middle and that of double negation.
§ 2 shows how several important results of classical analysis become unjustified once the principle of excluded middle is abandoned. Here Brouwer's critique is essentially negative, being based on counterexamples to classical theorems; but elsewhere he investigates which fragments of the Bolzano-Weierstrass theorem can be preserved in intuitionistic analysis (1919, sec. 1, and 1952a; see also Heyting 1956, arts. 3.4.4 and 8.1.3) and gives an intuitionistic form of the Heine-Borel theorem (1926a and 1926b; see also Heyting 1956, art. 5.2.2).

PRINCIPLE OF EXCLUDED MIDDLE

atical assertion that so far has nathematical been tested, that is, such that neither ${ }_{\alpha}$ nor $\longrightarrow \alpha$ has been proved; then, if wreen the choice for c_{n-1} and the retrice for c_{n} "the creating subject has superienced either the truth or the aburdity of α " $(1948, \mathrm{p} .1246)$, a certain lue is chosen for c_{n}; otherwise, another ulue is chosen for c_{n}. This method of Lefinition, by which the choices for the sustituents of an infinitely proceeding equence "may, at any stage, be made depend on possible future mathematial epperiences of the creating subject" 1993. p. 2), allowed Brouwer to offer teri emmterexamples to classical theor ems, in particular in analysis (1948a

1948b, 1949, 1949a, 1950, 1950a, 195 and 1952a). It is in these conditions th he came to write the two appendice 1954 and $1954 a ; 1954 b$ and $1954 c$ const tute a sequel to 1954a.
The translation of the main pap (1923b) is by Stefan Bauer-Mengelbe and the editor, and it is printed here wi the kind permission of Professor Brouw and Walter de Gruyter and Co. The fir appended paper (1954) was translated l Stefan Bauer-Mengelberg, Claske Berndes Franck, Dirk van Dalen, ar the editor; the second appended pap (1954a) was translated by Stefan Baue Mengelberg, Dirk van Dalen, and tl editor.

§ 1

Within a specific finite "main system" we can always test (that is, either pro of reduce to absurdity) properties of systems, that is, test whether systems can mipped, with prescribed correspondences between elements, into other systems; f the mapping determined by the property in question can in any case be perform in only a finite number of ways, and each of these can be undertaken by itself ar pursued either to its conclusion or to a point of inhibition. (Here the principle mathematical induction often furnishes the means of carrying out such tests witho iodividual tonsideration of every element involved in the mapping or of eve Wasible way in which the mapping can be performed; consequently the test even f patems with a very large number of elements can at times be performed relative rapidly.)
Ont the bae
whin a sme the testability just mentioned, there hold, for properties conceive Principle that for finite main system, the principle of excluded middle, that is, t ted in partic for every system every property is either correct [richtig] or impossib] the principle that the principle of the reciprocity of the complementary species, that apposibility that for every system the correctness of a property follows from t If, for lity of the impossibility of this property.
fat tor trample, the union $\subseteq(p, q)$ of two mathematical species ${ }^{1} p$ and q contains Qthis eqse appears, it follows on the basis of the principle of excluded middle (whi Lemeenise, if we an infinite sequence whose pends upon the occurrente finite sequence of digits in expansion of π. In 1948 he infinitely proceeding se nition depends upon mathematical problem has,

For properties derived within a specific finite main systema by means of ciple of excluded middle it is always certain that we can arrive at their themprin. corroboration if we have a sufficient amount of time at our disposal

It is a natural phenomenon, now, that numerous objects and mechanition world of perception, considered in relation to extended complexes of facte and can be mastered if we think of them as (possibly partly unknown) finite divel tems that for specific known parts are bound by specific laws of temporal a tion. Hence the laws of theoretical logic, including the principle of excluded are applicable to these objects and mechanisms in relation to the respectivico of facts and events, even though here a complete empirical corroboration
inferences drawn is usually materially excluded a priori and there cannet question of even a partial corroboration in the case of (juridical and other) in about the past. To this incomplete verifiability of inferences that are neverthicos considered irrefutably correct, as well as to our partial ignorance of the representiry finite systems and to the fact that theoretical logic is applied more often and people to such material objects than to mathematical ones we must probably attri, bute the fact that an a priori character has been ascribed to the laws of theoretial logic, including the principle of excluded middle, and that one lost sight of the conditions of their applicability, which lie in the projection of a finite discrete systet upon the objects in question, so that one even went so far as to look to the laws of logic for a deeper justification of the completely primary and autonomous mental activity [Denkhandlung] that the mathematics of finite systems representy. Acculd. ingly, in the logical treatment of the world of perception the appearanog of a contridiction never led us to doubt that the laws of logic were unshakable but only to modify and complete the mathematical fragments projected upon this world.

An a priori character was so consistently ascribed to the laws of theoretical losic that until recently these laws, including the principle of excluded middle, were applem without reservation even in the mathematics of infinite systems and we did not allus ourselves to be disturbed by the consideration that the results obtainod in this was are in general not open, either practically or theoretically, to any empirical corrobint tion. On this basis extensive incorrect theories were constructed, especially in the than half-century. The contradictions that, as a result, one repeatedly encountered gar rise to the formalistic critique, a critique which in essence comes to this: the langath accompanying the mathematical mental activity is subjected to a mathematical eram- w. nation. To such an examination the laws of theoretical logic present themserser at operators acting on primitive formulas or axioms, and one sets himself the transforming these axioms in such a way that the linguistic effect of the operstar to mentioned (which are themselves retained unchanged) can no longer be d the appearance of the linguistic figure of a contradiction. We need by no of reaching this goal, ${ }^{2}$ but nothing of mathematical value will thus b incorrect theory, even if it cannot be inhibited by any contradict refute it, is none the less incorrect, just as a criminal policy is none even if it cannot be inhibited by any court that would curb it.
${ }^{2}$ For the unjustified application of the principle of excluded middle to prol constructed mathematical systems can never lead to a contradiction (8ee or 1919a, p. 111).

§ 2

The following two fundamental properties, which follow from the principle of fod middle, have been of basic significance for this incorrect "logical" mathefor the theory of because it makes use of the principle of excluded middle),
The points of the continuum form an ordered point species; ${ }^{3}$
Brery mathematical species is either finite or infinite. ${ }^{4}$
The following example shows that the first fundamental property is incorrect. Let d, be the w th digit to the right of the decimal point in the decimal expansion of π, nit iet $\bar{m}=k_{n}$ if, as the decimal expansion of π is progressively written, it happens d_{n} for the nth time that the segment $d_{m} d_{m+1} \ldots d_{m+9}$ of this decimal expansion arns the sequence 0123456789 . Further, let $c_{v}=\left(-\frac{1}{2}\right)^{k_{1}}$ if $\nu \geqq k_{1}$, otherwise let $=\left(-\frac{1}{2}\right)^{r}$; then the infinite sequence $c_{1}, c_{3}, c_{3}, \ldots$ defines a real number r for which When the first fundamental property ceases to hold, the Paris school's notion of integral, the notion of L-integral, as it is called, ceases to be useful, because this pation of integral is bound to the notion "measurable function" and, according to the ahove, not even a constant function satisfies the conditions of "measurability". For in the case of the function $f(x)=r$, where r represents the real number defined itore, the values of x for which $f(x)>0$ do not form a measurable point species. ${ }^{6}$
That the second fundamental property is incorrect is seen from the example provided by the species of the positive integers k_{n} defined above.
When the second fundamental property ceases to hold, so does the "extended disunction principle", according to which, if a fundamental sequence of elements is contained in the union $\mathbb{S}(p, q)$ of two mathematical species p and q, either p or q sontins a findamental sequence of elements; and when the extended disjunction it ande ceases to hold, so does the Bolzano-Weierstrass theorem, which rests upon The according to which every bounded infinite point species has a limit point.
The following two theorems are less basic and simple than the fundamental pro"Thies metiontioned, yet they are equally indispensable for the construction of the "qical" theory of functions.

1. Every piontinuous function $f(x)$ defined everywhere in a closed interval i possesses a fretryy $\%$ that belong abscissa value x_{1} having a neighborhood α such that $f\left(x_{1}\right) \geqq f(x)$ 'That is, if onelongs to the intersection of α and i.
4hr is in on the one hand $a<b$ either holds or is impossible, or on the other $a>b$ either 6 chit utcorning to then one of the conditions $a<b$ or $a>b$ or $a=b$ holds.
Wrute In the latter ease s piple of excluded middle a species s either is finite or cannot possibly Finymed middle, a case 8 possesses an element, e_{1}; for otherwise, on the basis of the principle Faily . Fither could not possibly possess an element and would therefore be finite, which Wrthermore 8 possesses an element, e_{2}, distinct from e_{1}; for otherwise a would not This an element distinct from e_{1} and would therefore be finite, which is exeluded. 1. Fi. For the definition show that 8 possesses a fundamental sequence of distinct elements, Thy man be, we can also define "fundemental sequence" see below, p. 455. I]
tht the therived for every definy means of any other property x whose existence or impossi-
 Thithere, the notion of prove the impossibility of x for all positive integers.
What, the motion of R-integral, thast is, the notion of Riemann integral, can be applied to

The incorrectness of this theorem appears from the following examm enumerate the irreducible binary fractions between 0 and 1 （excludintig 0 and If $n=$ means of a fundamental sequence $\delta_{1}, \delta_{2}, \ldots$ in the ordinary way，that i is，so that thy fraction follows all those with a smaller denominator and fractions with that any denominator are ordered according to the magnitude of the numeratoi，if we to k_{1} the same meaning as above，if by $f_{n}(x)$ we understand the function that h value 2^{-n} for $x=\delta_{n}$ and vanishes for $x=0$ as well as for $x=1$ ，while it n linear between $x=0$ and $x=\delta_{n}$ as well as between $x=\delta_{n}$ and $x=1$ ，and if
$g_{n}(x)=f_{n}(x)$ for $n=k_{1}$ ，otherwise $g_{n}(x)=0$ ，then the continuous functioul

$$
g_{n}(x)=f_{n}(x) \text { for } n=k_{1} \text {, otherwise } g_{n}(x)=0 \text {, then the continuous functiou }
$$

$$
g(x)=\sum_{n=1}^{\infty} g_{n}(x)
$$

which is defined everywhere in the closed unit interval，possesses no maximum．
2．（Heine－Borel covering theorem．）If a neighborhood is assigned to every poind core ${ }^{7}$ of the point species A formed by the points and the limit points of a boundedentind point species B ，then the whole point species A can be covered by a finite number of thens neighborhoods．
The incorrectness of this theorem appears from the following example ：If we chove for B the number sequence $c_{1}, c_{2}, c_{3}, \ldots$ ，defined above，while we assign to the number c_{v} ，for $\nu \geqq k_{1}$ ，the interval（ $c_{v}-2^{-k_{1}-2}, c_{v}+2^{-k_{1}-2}$ ），otherwise the interval （ $c_{v}-2^{-\nu-2}, c_{v}+2^{-v-2}$ ），and to a limit point e（if any）of the sequence the interval （ $e-\frac{1}{2}, e+\frac{1}{2}$ ），then A cannot be covered by a finite number of these neighborhicods？
In view of the fact that the foundations of the logical theory of functions are indefensible according to what was said above，we need not be surprised，that a large part of its results becomes untenable in the light of a more precise critique．As an example，we shall refute one of the best－known classical theorems in this domain namely，the theorem that a monotonic continuous function defined everywhere is ＂almost everywhere＂differentiable，by constructing a monotonic continuous fune tion that is defined everywhere in the closed unit interval but is nowhere differentinbic
Let $0 \leqq x_{1}<x_{2} \leqq 1$ ．By the elementary function corresponding to the intersue $\left(x_{1}, x_{2}\right)$ we shall understand the continuous function，defined everywhere］in the closect unit interval，that，for $x_{1} \leqq x \leqq x_{2}$ ，is equal to

$$
\frac{x_{2}-x_{1}}{2 \pi} \sin 2 \pi \frac{x-x_{1}}{x_{2}-x_{1}}
$$

and，for $0 \leqq x \leqq x_{1}$ and $x_{2} \leqq x \leqq 1$ ，is equal to 0 ；by $\lambda^{\prime}, \lambda^{\prime \prime}, \lambda^{\prime \prime}, \ldots$ we shall under stand the intervals（ $\left.a / 2^{n},(a+2) / 2^{n}\right)$（where a and n denote positive integers）belong $f\left(\frac{1}{2}\right.$ ing to the closed unit interval and enumerated in the customary way；and by \int_{n} we shall understand the elementary function corresponding to $\lambda^{(n)}$ ．Furtherm

[^0]to k_{1} the same meaning as above；we put $g_{1}(x)=x$ and（for $n \geqq 2$ ）$g_{n}(x)=$ $l_{1}(5)$ for $n=k_{1}$ ，otherwise $g_{n}(x)=0$ ．Then the function
motonic continuous function that is defined everywhere in the closed unit mul but is nowhere differentiable．

As an exsmple illustrating the fact that even older and more firmly consolidated thearies in the field of the mathematics of infinity are affected by the rejection of the rinciple of excluded middle and the consequent rejection of the Bolzano－Weierstrass heorem，even if in much smaller measure than the theory of real functions，we take the notion of convergence of infinite series．
Let us say that an infinite series $u_{1}+u_{2}+u_{3}+\cdots$ with real terms，for which the sum of the first n terms is denoted by ε_{n} ，is nonoscillating if for every $\varepsilon>0$ it has been established that it is impossible to have at the same time an infinite sequence of positive integers $n_{1}, n_{2}, n_{3}, \ldots$ increasing beyond all bounds and an infinite sequence of positive integers $m_{1}, m_{2}, m_{3}, \ldots$ such that

$$
\left|s_{n_{v}+m_{v}}-s_{n_{v}}\right|>\varepsilon \text { for every } \nu ;
$$

then wcording to the classical theory on the basis of the principle of excluded middle such a monoscillating series is：
1．Nigatively convergent，that is，there exists a real number s with the property hat for every $e>0$ it has been established that it is impossible to have an infinite equence of positive integers $n_{1}, n_{2}, n_{3}, \ldots$ increasing beyond all bounds such that

$$
\left|s-s_{n_{v}}\right|>\varepsilon \quad \text { for every } \nu ;
$$

Bounded，that is，there exist two real numbers g_{1} and g_{2} such that

$$
g_{1}<s_{n}<g_{2} \text { for every } n ;
$$

Poitively convergent，that is，there exists a real number s with the property that ary $\varepsilon>0$ there exists a positive integer n_{8} such that

$$
\left|s-s_{n}\right|<\varepsilon \text { for every } n>n_{\varepsilon} .
$$

Let us now consider the following five nonoscillating series（where k_{1} again has
$u_{n}=1 / 2^{n}$ for every n ；
$1 / 2^{n} ; 2+1 / 2^{n}$ for $n=k_{1}, u_{n}=-2+1 / 2^{n}$ for $n=k_{1}+1$ ，otherwise $u_{n}=$
（0）$u=$
$1 / 2^{n}$ ：$n+1 / 2^{n}$ for $n=k_{1}, u_{n}=-n+1 / 2^{n}$ for $n=k_{1}+1$ ，otherwise $u_{n}=$ $u_{n}=$
$u_{n}=1$ for $n=k_{1}$ ，otherwise $u_{n}=1 / 2^{n}$ ；

The series（a）turns out to be positively convergent and therefore also negativel vergent and bounded；the series（b）to be negatively convergent and boundod， not positively convergent；the series（c）to be negatively convergent，but not bompler and therefore not positively convergent either；the series（d）to be bounded，bit not finally，to be not bounded，not negatively convergent，and not positively series
To illustrate the consequences of the distinction made above we shall consid Kummer convergence criterion，which reads as follows：＂If B_{1}, B_{2}, \ldots are positive numbers and if，for the infinite series of positive terms $r=u_{1}+u_{2}+u_{3}+\cdots$ ， have

$$
\lim \left\{B_{n} \frac{u_{n}}{u_{n}+1}-B_{n+1}\right\}>0
$$

then r is positively convergent＂．
The proof of this convergence criterion is customarily carried out as follows．
On the basis of what has been assumed we select M and k in such a way that，for $n \geqq M$ ，

$$
\begin{gathered}
B_{n} \frac{u_{n}}{u_{n}+1}-B_{n+1}>k \\
B_{n} u_{n}-B_{n+1} u_{n+1}>k u_{n+1}, \\
B_{n} u_{n}-B_{n+p} u_{n+p}>k\left(u_{n+1}+\cdots+u_{n+p}\right), \\
u_{n+1}+\cdots+u_{n+p}<\frac{B_{n} u_{n}}{k},
\end{gathered}
$$

whence boundedness follows for the series $r_{n}=u_{n+1}+u_{n+2}+\cdots(n \geqq M)$ and therefore also for the series $r=u_{1}+u_{2}+\cdots$ ．On the basis of this boundedness the series r is then declared to be not only nonoscillating，which is permitted for a series of positive terms，but also positively convergent．

The last inference，however，rests upon the Bolzano－Weierstrass theorem and must be rejected along with it．
Pringsheim（1916，p．378）offers an altogether different and more instructivil proof． After he has proved the positive convergence of r for the case of the positive conver gence as well as for the case of the positive divergence of $b=1 / B_{1}+1 / B_{2}+\cdots$, ， assumes that the series b must be either positively convergent or positively divergent． and for this reason he declares that the general criterion has been proved．
But the assumption mentioned is inadmissible；for it，too，rests upon the Bolzailo－ Weierstrass theorem．
It is worth noting，now，that Kummer himself expressed（1835）his critarion ouly with the auxiliary condition $\lim B_{n} u_{n}=0$ and that with this auxiliary condtrion is is positive convergence of the series r is actually ensured by the criterion， immediately evident from the proof above．
That not only the derivations of the Kummer convergence criterion without any auxiliary condition are inadequate ${ }^{10}$ but also the criterion itself is incorred is she prow
${ }^{10}$ The inadequacy of these derivations，in contradistinction to the correcioser to me midic of originally carried out by Kummer himself for the restricted criterion，was indioulludd student M．J．Belinfante as an example of the significance of the principle the theory of infinite series．
earies（d）above，which is neither positively convergent nor negatively conver－ For，if we determine the successive B_{n} for this series from the relations

$$
B_{1}=4 \quad \text { and } \quad B_{n} \frac{u_{n}}{u_{n}+1}-B_{n+1}=1 \quad \text { for every } n
$$

3 turn out to be positive，so that the extended convergence criterion is satisfied ithough positive convergence does not exist．This omission of the Kummer left，lary tondition，which took place after Kummer and was prompted by Dini，has thus aisiderably curtailed the scope of the convergence criterion in question．

ADDENDA AND CORRIGENDA
 （1954）

Regarding my paper＂Over de rol van het principium tertii exclusi in de wiskunde， in het lijzonder in de functietheorie＂（1923a），published thirty years ago in volume 2 of Wis－en Natuurkundig Tijdschrift，which has since been discontinued，I would now Iike to make the following remarks．
1．Page 1，line 4 ［above，page 335，line 1】，the term＂to test＂【＂toetsen＂（1923a）， a＂profen＂（1923b）］is used for either proving or reducing to absurdity．In subse－ quent lintuitionistic literature，however，a property of a mathematical entity is said to be＂tested＂if either its contradictoriness or its noncontradictoriness is ascertained， and＂judged＂［［＂geoordeeld＂］if either its presence or its absurdity is ascertained．
II．Page 3，footnote（＊）【above，page 336，footnote 2】，the noncontradictoriness of upplications of the principle of excluded middle to the attribution of a property E to wellironstructed mathematical system was pointed out．In subsequent intuitionistic litenture，however，it became apparent that for the simultaneous application of the principle mentioned to the attribution of a property E to each element of a mathe－ sutical species S noncontradictoriness remains ensured only for finite S ．For infinite 8 Ithe imultaneous attribution mentioned can very well be contradictory．
III．Page 3，footnote（＊＊＊＊） above，page 337，footnote 5】，for the construction， ind in the text，of a real number r for which none of the relations $r=0, r>0$ ， and $r 0$ holds，we allowed every property x for which neither a finite number no must an x nor the impossibility of x for every finite number is known．To this IV．Page the condition that x can be judged for every finite number．
iv．Page 4，line 18 up［above，page 338，line 12】，the classical Heine－Borel covering mistic was formulated for an arbitrary＂closed＂bounded point species．The intui－ Tposition of the in this theorem that follows there should have been preceded by an teresian or in a＂lutuitionistic splitting of the classical notion＂closed＂．For，if in a ＂tad by or in a＂located＂［＂afgebakende＂】 compact topological space R we under－ Perulation core of species of the points that coincide with a given point，by an Suitely proceeding sequence of cores of Q that are mutually apart，and by a limit Th a cule species Q a core of which every neighborhood contains a core of Q ，if we 4， 4 that a core Q a core of which every neighborhood contains a core of Q ，if we the pecies Q that contains all of its limit cores is β－closed，if，accordingly，we Decies Q that contains all of its limit cores is β－closed，if，accordingly，we
a core species Q and its accumulation cores the α－closure of Q and the
species of limit cores of Q the β-closure of Q, if we take the formulation of the classical Heine-Borel covering theorem as applying to "closed" bound abover species Q, then this formulation is intuitionistically correct only if by "closed" " cor " β-closed" and if, moreover, Q is a core species located in R, that is to say, it is f anh every core of R at a distance that is computable with unlimited accuracy. In par lar, therefore, with regard to the number sequence $c_{1}, c_{2}, c_{3}, \ldots$ referred to on pare line 13 up [above, page 338, line 17】, which is bounded and is located in the numb continuum, the classical covering theorem is intuitionistically valid only for it β-closure, that is to say, for its union with its limit number, but not for its α-dosimen referred to on page 4, line 13 up [above, page 338, line 19], that is to say, for its union with the number 0, if this number should turn out to be identical with the limit number Nor is the classical covering theorem intuitionistically valid for number core specie that are β-closed and bounded but not located in the number continuum, as, for exampl the union of the number cores $p_{1}, p_{2}, p_{3}, \ldots$, in which $p_{v}=1$ for $\nu<k_{1}$ and $p_{v}=-$ for $\nu \geqq k_{1}$
V. The example given on page 5 , lines $1-13$ 【above, page 338 , line $8 u$, to page 339, line 5], of a monotonic, continuous, nowhere differentiable function defined every where in the closed unit interval possesses these properties exclusively as a function of the (classical) continuum of approximations made according to a law, not as a function of the (intuitionistic) continuum of more or less freely proceeding approximations. A connection between monotonicity and differentiability of full functions of the intuitionistic continuum can be found in my 1923, p. 24.

FURTHER ADDENDA AND CORRIGENDA (1954a)

With reference to point V of my 1954, pp. 104-105 [above, pp. 341-342], I give below an example of a continuous, monotonic, nowhere differentiable, real, full function of the intuitionistic closed unit continuum K. ${ }^{1}$

For a natural number n we understand by $\chi_{n}(x)$ the real function of K that for the "even n-cores" $2 x=a / n$ (a being an integer and $0 \leqq a \leqq n$) is equal to 0 , for the "odd n-cores" $x=(2 a+1) / 2 n$ (a being an integer and $0 \leqq a \leqq n$) is equal to 1 , $4 n$.ll and for every $a(0 \leqq a \leqq n)$ is linear between $x=a / n$ and $x=(2 a+1)$ and, for as between $x=(2 a+1) / 2 n$ and $x=(a+1) / n .^{3}$ Further we put $\psi_{1}(x) \equiv x$ ana, $n \geqq 2, f$ being an opaque fleeing property and $\kappa_{1}(f)$ being its critical number, ${ }^{1}$, ${ }^{2}$
${ }^{1} \llbracket$ For the definitions of "continuous", "full", and "unit continuum" see below, pp. 459-1371 see also Brouwer 1953, p. 3, line 2 u , to p. 4, line 6.1

2 [For the definition of "core" see below, p. 458; see also Brouwer 1953, p. 3, line 20, line 6.]
${ }^{3}$ [From the intuitionistic point of view the definition of $\chi_{n}(x)$ does not seem unot) see Remark in 2.2.8 of Heyting 1956, p. 27. I]

4 "We shall call a hypothetical property f of natural numbers a fleeing properth the following conditions:
(1) For each natural number it can be decided either that it possesses the prop
(1) For esich natural number it can
(2) No method is known frop calculating a natural number possessing the property fif fonom ${ }^{\text {(10 }}$ (3) The assumption of existence of a natural number possessing the property $/$ lead to an absurdity.
In particular, a fleeing property is called opaque if the assumption of existan

$$
\psi(x) \equiv \sum_{v=1}^{\infty} \psi_{v}(x)
$$

continuous, monotonic, nowhere differentiable, real, full function of K.
For one must take into account the possibility (α) that at some time it turns out $s_{1}(f)$ is nonexistent, so that, for all values of $x, \psi(x)$ possesses an ordinary avetive equal to 1.
But one must also take into account the possibility (β) that at some time a natural mber $m=\kappa_{1}(f)$ will be found. In that case $\psi(x)$ has, for all values of x that lie and fores, an ordinary derivative, either equal to $3 / 2$ or equal to $1 / 2$; for all even m-cores x it has a right derivative (nonexistent for $x=1$) equal to $3 / 2$, 4has a rightivative (nonexistent for $x=0$) equal to $1 / 2$; and for all odd m-cores x sue of x the derivative equal to $1 / 2$ and a left derivative equal to $3 / 2$, while for every wut aither to be an m-core or to lie apart from the m-cores.
Tharefore, with respect to the existence of an ordinary derivative, or of a right and s left lirivative, of $\psi(x)$ one must, for every value of x, take into account possibilities lying linutually apart, so that for no single value of x an ordinary derivative can be wallilated.
By the nature of the case this function $\psi(x)$ is not "completely differentiable" in the sense of Brouwer 1923, § 3, p. $20 .{ }^{6}$
So far as the function $g(x)$, mentioned in Brouwer 1923a, p. 5 [above, p. 339], is sincarned, it must, according to the explanations that follow below, be abandoned Ls in farample of a continuous, monotonic, nowhere differentiable function, even for be classical closed unit continuum $K_{\mathrm{r}}{ }^{7}$

§ 2

By a $k^{(v)}$ we understand a closed $\lambda^{(4 \nu+1)}$-interval; ${ }^{8}$ for $\nu \geqq 0$, by an $h^{(v)}$ we underWhes af entirely or partially covered by K; further, after ordering the $h^{(v)}$ for all ets of ν in a single fundamental sequence ${ }^{\theta} \theta^{\prime}, \theta^{m}, \theta^{m}, \ldots$, to be called F, by a Shlor fore
The p. 181
The crib1.)
Lhuspasahl of the property a fleeing picperty is apparently what Brouwer (1929a, p. 161) calls the Thyty.] of the property, that is, the (hypothetical) least natural number that possesses the
esay that [a number core] a lies apart from $[8$ number core $] b$ if there is some natural Thie such that $|b-a|>2^{-n}{ }^{-n}$." (Brouwer 1953, p. 4.) See also below, p. 462, footnote 10 a . $]$ Thde heimition of "completely differentiable" requires too many preliminary definitions to be Whemilar if we refer the reader to the pessage indicated in the text.]
${ }^{2}-\mathrm{A}$ aite a fer arie ela property f. Ther radical f.
Wivt 1952 , p. 142 inum is the species of predeterminate intuitionistic real numbers; see Pr the V.] ${ }^{\text {pr. }}$. 42 , bottom half of first column, and p. 143, top of first column, as well as for the soninit
the insinition of " $\lambda(v)$-interval" see below, p. 457.]
minition of "fundamental sequence" see below, p. 455 .]
unitary standard number we understand an infinitely proceeding sequenced $\theta^{\left(c_{,}\right.}$ $\theta^{\left(c_{3}\right)}, \ldots$ in which, for every $\nu, \theta^{\left(c_{v}\right)}$ is an $h^{(v)}$ and $\theta^{\left(c_{v+1}\right)}$ consists entirely of inime points of $\theta^{\left(c_{v}\right)}$. Then, the species of unitary standard numbers is identical with the species of accretion sequences ${ }^{11}$ of a dressed fan w^{12} of which we can say-lecaune every unitary number core, that is, every number core of K, coincides with \& uritary standard number-that it represents K.
As a function of a variable number core x, either of K_{r} or of $K, g(x)$ is now obtained as follows. ${ }^{13}$ Let f be a fleeing property; let $\kappa_{1}(f)$ be its critical number; let $p_{>}$and q_{v} be respectively the least and the greatest endcores of $\theta^{(\nu)}$; and let $\varphi_{v}(x)$ be the continuous function of K_{r}, or of K, that for the part of $\theta^{(\nu)}$ that belongs to K K, is equal to

$$
\frac{q_{v}-p_{v}}{2 \pi} \sin 2 \pi \frac{x-p_{v}}{q_{v}-p_{v}}
$$

and, for $x \leqq p_{v}$ as well as for $x \geqq q_{v}$, is equal to 0 . Then we put $g_{v}(x) \equiv x$ for $v=1$, $g_{\nu}(x) \equiv \varphi_{\nu}(x)$ for $\nu=\kappa_{1}(f)$, and $g_{v}(x) \equiv 0$ for all other values of ν. Finally, we put

$$
g(x) \equiv \sum_{\nu=1}^{\infty} g_{\nu}(x)
$$

If we call a $\theta^{(v)}$ for which $\nu=\kappa_{1}(f)$ the critical interval of f and if we represent this by $i(f)$, then (at least for the current examples of F and f) not a single indication is at hand concerning the position of a possible $i(f)$; therefore, it seems at the outat that for every x every possibility of obtaining a guarantee for the nonbelonging to $i(f)$ is lacking, and so is for every unitary finite binary fraction ${ }^{14} x$ every possibility of computing a ratio $1 / 3$ for the lengths of the segments into which it would hare to divide a possible $i(f)$ to which it would belong; therefore finally it seems that for every x every possibility of computing an ordinary derivative is lacking.

§ 3

This situation, however, changes when one intends to make the infinitely proceeding process of the creation, by free choices, of a unitary standard number u run parallel to f the infinitely proceeding process of the successive judgments of the assignment uid to the successive natural numbers and moreover to take care that the creation cess of u continually lags sufficiently far behind the process of judging that war then mentioned to prevent contact with an $i(f)$ that might possibly appear, so that than must come into existence a number core x of K for which $g(x)$ possesses an derivative equal to 1.
Once this insight has been obtained, it is not far-fetched to observe that the wayl indicated here, in which u comes to exist is at hand for all the accretion
${ }^{10}$ [See the definition of "unbounded choice sequence" below, p. 446 ; "infinitcl] proctedise equence" was used in Brouwer 1952, p. 142, bottom of first column; see also 3.1. 1956, pp. 32-34.]
11 "Accretion sequence" ("accretiereeks") is here apparently used for "infiniteis p equence in a dressed spread". T]
$12[$ For the definition of "dressed fan" see Brouwer 1953, p. 16, first paragraplit]
10
${ }_{13}^{13}$ The remark made in footnote 3 applies to the function $g(x)$. I]
ants of a subfan w^{\prime} of w that is obtained from w by the deletion, from the of the elem cobstituents ${ }^{15}$ that are admitted for the nodes of w, of a possible $i(f)$, as If of the two λ-intervals that are of the same length as $i(f)$ and are partially covered by i(f). Therefore, for every number core x of K that is represented by this dressed fin iv, $g(x)$ possesses an ordinary derivative.
B. means of the same fan w^{\prime} it is even possible to exhibit, for every natural number , a masurable core species S_{n} that is contained in K, has a content greater than $1-2^{-4 n}$, and in which $g(x)$ everywhere possesses an ordinary derivative. ${ }^{16}$ For that nie e itablishes first of all for every n one of the following facts : either for $v \leqq n$ no critical interval of f occurs among the $h^{(v)}$ or for some $m \leqq n$ a critical interval of focurs among the $h^{(m)}$. Further, there is chosen for S_{n}, in the first case, the core itht lie apart fresented by w^{\prime} and, in the second case, the species of the cores of K -1. ine initely proceeding sequence of the S_{v} forms a measurable core species that is rintained in K and has content 1, then $g(x)$ turns out to be a continuous, monotonic, rol, full function of K that is differentiable almost everywhere.
And since the predeterminate elements of w^{\prime} represent number cores of K_{r}, K_{r} also puessses an (everywhere dense, ever unfinished, and ever enumerable) core species in which $g(x)$ is everywhere differentiable.

[^0]: ${ }^{7}$［For the definition of＂point core＂see below，p．458．］
 ${ }^{8}$［＂＂The species of the points that coincide with points of the point species Q is cail spuibl completing 【ergänzende】point species or，for short，the completion 【Ergänzung】 of Q．A Broun 1919, ，
 For the definition of＂coincide＂вee below，p．458，and for that of＂identical winteroxpl
 ${ }^{9}$ Nor does the theorem hold for a closed bounded entire point spesies A ．Count if and for A a species of abscissas $(-2)^{-v}$ such that an abscissa，$(-2)^{-v}$ belond ν is a no in the thet natural number k_{1} satisfying the characterization above is known and ν forvel as in

