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The present paper gives a semantical model theory for Heyting's
intuitionist predicate logic, and proves the completeness of that system
relative to the modelling. The model theory and completeness theorem
were announced in [1]. The semantics for modal logic which we announced
in [1] and developed in [2], [3], together with the known mappings of
intuitionistic logic into the modal system S4, inspired the present semantics
for intuitionist logic. It would in fact be possible to derive the completeness
of Heyting's predicate logic in our semantics by using the mappings
into S4 together with the results of [2], [3]. We prefer, however, to develop
the semantics of intuitionistic logic independently of that of S4; this
procedure will enable us, we believe, to obtain somewhat more infor-
mation about intuitionistic logic, including the mapping into S4 as a
consequence thereof"), Further, a fairly recently worked-out develop-
ment, not contained in the announcement of [1], is included: an exposition
of Cohen's notion of "forcing" [5] in terms of the present semantics.
In addition to giving a simple decision procedure for Heyting's proposi-
tional calculus, Part II will present a result not announced in [1] but
mentioned in [4]-the undecidability of monadic intuitionistic quantifica-
tion theory. The proof is based on the semantics previously developed.

It should be mentioned that, for the pure implicational intuitionistic
propositional logic, Beth [6] has announced the rediscovery of essentially
the present modelling; also that, for all of intuitionist propositional logic,

1) The reader who wishes to understand thoroughly the deeper motivation of the
present paper, however, is strongly urged to consult [2], [3], and [16], which give the
underlying analysis of modal logic.
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a modelling equivalent to ours can be extracted from the results of
Lemmon and Dummett [7].1)

The results of this paper, though devoted to intuitionistic logic, are
proved only classically, except as mentioned below. Intuitionistically,
the situation is essentially the same as that for Beth's completeness
theorem [8], as analysed by Dyson and Kreisel in [9]; a reader who is
interested in intuitionistically valid proofs can consult [9] and apply a
similar analysis to the present results. We will give indications below
which (we believe) will be sufficient for a reader familiar with [9] to make
such an analysis. In the course of these indications, we will prove some
results about Kreisel's system Fe which are parenthetical to the main
theme of this paper. In particular, we will show that Kuroda's conjecture
and Markov's principle are both refutable in Fe.

Some notations that will be used throughout the paper are the follow-
ing: P", Qn, R" (n ~ 0) are n-adic predicate letters; a O-adic predicate
letter is usually called a "proposition(al) letter." Occasionally the super-
script on a predicate letter will be omitted if this does not sacrifice clarity.
We use letters x, y, Z, . . . , with or without subscripts, as (individual)
variables. The formulae of the intuitionistic propositional calculus are to
be built out of the usual connectives A, V, ::::>, -', starting with the pro-
positional letters as atomic formulae. In the predicate calculus, not only
propositional letters but also formulae pn(xu . . . , x n)are taken as atomic;
thence formulae are built up from these in the usual manner, using the
connectives just given and the quantifiers (x) and (3x). We use A, B,
C, . . . , for arbitrary formulae of propositional or predicate calculus,
depending on the context; if we wish to call attention to certain free
variables in a formula, we use such notations as A(x1, ... , x n) . We
assume, finally, that the reader is familiar with standard presentations of
Heyting's formalized intuitionistic propositional and predicate calculus,
say the presentation in [10].

1) Kreisel's conjectured "reinterpretation of the (intuitionistic) logical constants"
in [171 is also, if his conjectures prove correct, related to the present model theory.
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1. The model theory

SAUL A. KRIPKE

We define an (intuitionistic) model structure (m. s.) to be an ordered
triple (G, K, R) where K is a set, G is an element of K, and R is a re-
flexive and transitive relation on K.

An (intuitionistic) model on a m. s. (G, K, R) is a binary function
¢(P, H), where P ranges over arbitrary proposition letters") and H ranges
over elements of K, whose range is the set {T, F}, and which satisfies
the following condition: if ¢(P, H) = T and HRH' (H, H'cK), then
¢(P, H') = T.

Given a model ¢(P, H), we can define a value ¢(A, H) (=T or F) for
an arbitrary formula A of propositional calculus by induction on the
number ofconnectives in A .IfA has no connectives, then it is a proposition
letter and ¢(A, H) = T or F has already been defined for each H.
Assume that ¢(A, H) and ¢(B, H) have already been defined. Then we
stipulate:

a) ¢(A A B, H)= T iff ¢(A, H) = ¢(B, H) = T; otherwise,
¢(A A B, H) = F.

b) ¢(A v B, H) = T iff ¢(A, H) = T or ¢(B, H) = T; otherwise,
¢(A v B, H) = F.

c) ¢(A ::J B, H) = T iff for all H' E K such that HRH', ¢(A, H') = F
or ¢(B, H') = T; otherwise, ¢(A ::J B, H') = F.

d) ¢(,A, H) = T iff for all H' E K such that HRH', ¢(A, H') = F;
otherwise, ¢(,A, H) = F.

Notice that the conditions on A and v are exact analogues of the
corresponding conditions on classical conjunction and disjunction; but
the conditions on :::> and, are not analogous to the classical conditions.
It is easy to show by induction, for any H, H' E K such that HRH', that
if ¢(A, H) = T, then ¢(A, H') = T. This property has been stipulated

1) In [2), we let ¢(P, H) range over H E K and atomic subformulae of a fixed formula
A. We called this a model of A. We could equally well have adopted this orientation
here; conversely (2) could have adopted, mutatis mutandis, the present definition.
The viewpoint of (2) is exploited in the analysis of Cohen's "forcing", where we consider
models assigning values only to formulae built out of a fixed atomic formula P(x).

We should also remark that, although in this section we have taken the atomic
formulae to be proposition letters and formulae pn(x" ... , xn), the definitions would
equally well go through if formulae were built out of an arbitrary fixed class of atomic
formulae; this fact is exploited in the "provability interpretation," section 1.3, below.
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for a propositional letter, and it follows for more complex formulae
using the clauses (a) - (d).

Notice that, intuitionisticaIly, the inductive definition here given does
not work, since it clearly appeals to the law of excluded middle in clause
(c) and (d) (e.g., in (d), either for all H', ¢(A, H') = F, or not). Thus
intuitionistically, it would be best to define a model ¢ as a mapping
¢(A, H) in {T, F}, where A ranges over arbitrary formulae of propositional
calculus, and which happens to satisfy the clauses (a) - (d) as well as
the condition that ¢(P, H) = T and HRH' implies ¢(P, H') = T. Clearly,
from the classical viewpoint, this modification leaves the notion of a
model essentially unchanged.

We call a formula A of propositional calculus valid iff ¢(A, G) = T for
every model ¢ on a model structure (G, K, R). A model ¢ on a m. s.
(G, K, R), such that ¢(A, G) = F, is called a countermodel for A.

To extend the modelling to quantification theory, we define a quantifi-
cational model structure (q. m. s.) to be a model structure (G, K, R),
together with a function IjJ (the "domain function"), defined on K, such
that IjJ(H) is a non-empty set for all H E K, and IjJ(H) s:; IjJ(H') if HRH'
(H,H' EK).

(Intuitionistically, we require that IjJ(H) not only be non-empty, but
that it contains at least one element; of course, a species may be known
not to be empty without any particular element thereof being known.)

We define a quantificational model ¢ on a q. m. s. (G, K, R) to be a
function ¢(pn , H), where P" ranges over l1-adic predicate letters (for
all n), and H ranges over elements of K. If 11 = 0, ¢(pn, H) = T or F,
and if n ~ 1, ¢(r, H) is a subset of the Cartesian product [1jJ(H)r. We
again require for n = 0, that ifHRH', and ¢(pn, H) = T, ¢(r, H') = T;
for n ~ 1, analogously we require that if HRH', ¢(r, H) s:; ¢(r, H').

Let

U = U IjJ(H).
H£K

Given a quantificational model ¢, we can define, for each formula A of
intuitionistic quantification theory, a value ¢(A, H) = T or F, for each
HE K, relative to a fixed assignment of elements ofU to the free individual
variables of A. If A is an atomic formula, it is either a propositional letter
P, in which case ¢(P, H) = TorFis given, or itis a formula P'(x., ... , xn)
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(n ~ 1). In this latter case, let elements aI' ... , an of U be assigned to
Xl' ... , Xn; then we can define, relative to this assignment, ¢(pn(XI' ... ,
x n), H) = Tiff (a l, ... , an) E ¢(r, H), and ¢(r(Xl' ... , x n), H) = F iff
(al, ... , an) ¢: ¢(pn, H). Given this assignment to atomic formulae, we
can build up the assignment to more complex formulae by induction.
Suppose A(Xl' ... , Xmy) is a formula, where at most the variables
indicated occur free in A(xl' 'Xm y). Assume, that relative to each assign-
ment of elements of U to Xl' , Xmy, a truth-value ¢(A(xl , ... , Xmy),
H) has been defined for each H. We can then obtain values for ¢«y)A
(Xl' ... , Xn,y), H) and ¢«3y)A(Xl' ... , Xn,y), H) as follows. Let the
elements al' ... , an of U be assigned to the variables Xl' ... , x.; Then:

e) We say ¢«3y)A(Xl' ... , Xmy), H) = T iff there is e b e l/f(H) such
that ¢(A(x l, ... , Xn, y), H) = T when Xl' ... , Xn are assigned al' ... ,
am respectively, and y is assigned b; otherwise ¢«3y)A(xl , ... ,Xn, y),
H) = F.

f) We say ¢«y)A(xl, ... , Xmy), H) = T iff for each H' E K such that
HRH' ¢(A(x l, ... , Xmy), H') = T when Xl> ... , x, are assigned al' ,
an, and y is assigned any element b of l/f(H'); otherwise, ¢«y)A(x l, ,
X n, y), H) = F.

Finally, we stipulate that if truth-values ¢(A, H) and ¢(B, H) (for all
H E K), are given relative to an assignment to the free variables of A and
B, then corresponding values ¢(A A B, H), ¢(A v B, H), ¢(A :::J B, H),
and ¢(,A, H) are to be defined according to the prescriptions (a) - (d).

To get a proper intuitionistic definition of model, we should again
modify the given conditions and stipulate that a model ¢ is a function
¢(r, H) as above, together with a function ¢(A, H), assigning T or F
to ¢(A, H) relative to a given assignment of elements of U to the free
variables of A, and satisfying the previously stated conditions (e.g., that
¢(r(xl, ... x n) , H) = T when Xi is assigned aD .:0;; i .:0;; n) iff (a l , ... ,

an) E ¢(pn, H)). Again, this definition is classically substantially equi-
valent to the old one.

We note that all of the results to follow would remain valid if we
allowed </J(r, H) (n ~ 1) to be any subset of U", rather than restricting
it to subsets of [l/f(H)]n. We would also leave the theory unchanged if we
regarded ¢(A, H) as defined only when the free variables of A are assigned
elements of l/f(H), and undefined otherwise.
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1. 1. Intuitive interpretation

A triple (G, K, S), with K a set, G E K, and S a relation defined on K,
is called a tree (and G is called its origin) iff: (1) There is no HE K such
that HSG; (2) for every HE K except G, there is a unique H' E K such
that H'SH; (3) for every HE K, GS*H, where S* is the ancestral of the
relation S(i.e., H 1S*Hz iff H 1 =Hz or H 1S

nHz for some power n of S). If
HSH', wecallH the predecessorofH', and H' a successor of H; the tree is
finitary iff every H has only finitely many successors. An element H without
successors is called an endpoint. Note that K can be characterized in
terms of S as its field, and G can then be characterized as the unique
element of K without a predecessor. (This definition of tree is adopted
from [2]. Intuitionistically, we must further require that the elements H
be natural numbers and that S be decidable.)

A m. s. (G, K, R) is called a tree m. s. iff there exists a relation S such
that (G, K, S) is a tree and R is the smallest reflexive and transitive
relation containing S (i. e., R = S*). In our remarks on intuitive inter-
pretation, we will primarily be concerned with tree models (i. e., models
defined on a tree m. s. (G, K, R». In fact, we will show below in section
1.2 that any model can be replaced by an "equivalent" tree model.

The rest of this section will consist of an informally stated intuitive
interpretation of the modelling, together with indications how to state
the interpretation more formally in terms of Kreisel's theory [11] of
absolutely free choice sequences.") The reader unfamiliar with [11] (or
uninterested in these details is advised to omit the remarks relating to
[11] but to read the rest of the section.

The interpretation proceeds as follows. Suppose we are given a model
¢ for a formula A of propositional calculus whose sole atomic sub-
formulae are P, Q, R. For example, suppose we have a tree model ¢
on a m. s. (G, K, R) diagrammed as follows:

1) We are informed that Godel (unpublished) has proposed that such sequences be
called "absolutely lawless," presumably on the ground that they are not completely
free, being governed by the "higher order" requirement that no restrictions, other
than those defining the spread in question, ever be placed on choices later by a free
decision. Since Godel's suggestion has not yet been adopted in print, we hesitate to
make this change ourselves.
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Figure 1.

The elements of K are G, Hi' H 2 , H 3, H 4 . We have written an atomic
formula above a node G or Hi if ¢ assigns it the value T on this node;
we omit it if ¢ assigns it the value F. Thus, e.g., ¢(P, G) = T while
¢(Q, G) = ¢(R, G) = F.

We intend the nodes H to represent points in time (or "evidential
situations"), at which we may have various pieces of information. If,
at a particular point H in time, we have enough information to prove a
proposition A, we say that ¢(A, H) = T; if we lack such information,
we say that ¢(A, H) = F. If ¢(A, H) = T we can say that A has been
verified at the point H in time; if ¢(A, H) = F, then A has not been
verified at H. Notice, then, that T and F do not denote intuitionistic
truth and falsity; if ¢(A, H) = T, then A has been verified to be true
at the time H; but ¢(A, H) = F does not mean that A has been proved
false at H. It simply is not (yet) proved at H, but may be established
later.

Now given a point in time G, there are various possibilities open for
gaining further information about the propositions. One situation is
diagrammed in Figure 1. At the point G (representing our present in-
formation), we have proved P. For all we know, we may remain "stuck"
at G for an arbitrarily long time, without gaining any new information.
But it is possible that we will gain enough information to "jump" to
point Hi (in which case we have a proof of R in addition to P), or to
the point H 2 (where we get a proof of Q in addition to P), or even to the
points H 3 or H 4 • If we have "jumped" to the point H 2 , so that we have
proved both P and Q, then as far as we know, we may remain "stuck"
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for an arbitrarily long time at HZ; but we may advance to H 3 or H 4 •

Notice that if we jump to the "situation" H 3 , we still have proved no
more than P and Q; but this does not mean that the situation H 3 is
exactly like Hz. In fact, as long as we remain at Hz, the possibility is
still open to us that we will some time or other be able to advance to
H 4 and prove R; but, if we are at the situation H 3 , we have gained
enough information to exclude the option that R will ever be proved.

Now, in general, in a model structure (G, K, R), we interpret G as the
present "evidential situation." If H is any situation, we say HRH' if,
as far as we know, at the time H, we may later get enough information
to advance to H'. Thus, since the information we have at H may be all the
knowledge we have for an arbitrarily long time, we stipulate that HRH;
and the transitivity property of R is intuitively obvious. The requirement
that, for any A, if ¢(A, H) = T and HRH', then ¢(A, H') = T, simply
means that if we already have a proof of A in the situation H, then we can
accept A as proved in any later situation H'-we don't forget. Finally, the
inductive clauses for propositional calculus are in consonance with the
intuitionistic interpretations of these notions. Thus A A B [A v B] is
proved when both A and B have been proved [either A has been proved
or B has been proved]; so ¢(A A B, H) = Tiff ¢(A, H) = ¢(B, H) = T
[¢(A v B, H) = T iff ¢(A, H) = Tor ¢(B, H) = T]. Notice that disjunc-
tion and conjunction behave, in a given situation H, as if they were
classical truth-functions. Negation and implication, on the other hand, are
not so treated. To assert-cs intuitionistically in the situation H, we need to
know at H not only that A has not been verified at H, but that it cannot
possibly be verified at any later time, no matter how much more infor-
mation is gained; so we say that ¢(.,A, H) = T iff ¢(A, H') = F for
every H' E K S.t. HRH'. Again, to assert A => B in a situation H, we
need to know that in any later situation H' where we get a proof of A,
we also get a proof of B; the inductive definition of ¢(A => B, H) for-
malizes this requirement.

Consider the following two point countermodel to the law of excluded
middle:

p

G
Figure 2.

H
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We have ¢(P,H) = T, ¢(P, G) = F. Since ¢(P, H) = T, ¢(,P, G) = F,
and hence ¢(P v ,P, G) = F. Intuitively, at the present situation G, we
have not yet proved P; nor can we assert ,P, since the possibility remains
that we will get enough information later to advance to H and assert P.
Thus, at the point G, we are not in a position to assert P v v]',

These considerations can readily be formulated in terms of Kreisel's
theory FC of absolutely free choice sequences. Intuitively, an absolutely
free choice sequence (a.f.c.s.) is a free choice sequence a, chosen from a
given spread S, in which it is stipulated from the beginning that no
restrictions, other than the conditions defining the spread S, can ever be
placed on the choices.

Figure 2, then, for example, can be interpreted in terms of the present
theory as follows: Consider a.f.c.s.'s from the spread S consisting of
free choices ofO's and 1's, in which, however, 1 can be followed only by 1.
Intuitively, we interpret the situation G as a choice of 0 and H as a choice
of 1. Since, starting with G, we can remain "stuck" at G as long as we like,
we permit 0 to be followed by an arbitrary number of O's as well as by
1; but, since H is followed only by itself, we permit 1 to be followed only
by 1. Then P{a) is the assertion "a 1 occurs on the a.f.c.s. a" (i.e., (3n)
(a{n) = 1), where n ranges over natural numbers). As long as we have
chosen only O's in a, we have not established P{a); but on the other hand,
since a is chosen with no restrictions other than being in S, we cannot
exclude the possibility of the choice of a 1 later, so we cannot establish
,P{a). These considerations can be formalized easily in Kreisel's FC so
as to yield a proof of ,(a t S) (P{a) v,P{a)), where at S ranges over
a.f.c.s.'s in S.

More generally, given any (intuitionistically defined) countable tree
model ¢ of A on a m.s. (G, K, R), suppose we identify the nodes (ele-
ments of K) with natural numbers, identifying G in particular with 0.
Define in terms of (G, K, R) a spread S consisting of all free choice
sequences in which the initial choice is 0, and the choice of any natural
number m must be followed either by a further choice of m or by a
choice of some successor ofm on the tree. To any atomic subformulaP of
A, and a.f.c.s. a in S, associate a formula P{a) abbreviating (3x) (3m)
(a{x) = m and ¢(P, m) = T). Given B, C, and associated formulae B{a)
and C{a), associate with B A C, B{a) A C{a); with B v C, B{a) v C{a),
etc. Then, it is easily seen by induction that, for any subformula B of A,
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if¢(B, m) = T,then(a~S)«3x)(a(x) = m) =:> B(a)),andif¢(B,m) = F,
, (et ~ S) «3x) (et(x) = m) =:> B(et)). In particular, if ¢(B, G) = T[ =F],
then since every a.f.c.s. in S contains °(= G), we have (et ~ S) B( «) [,(a ~ S)
B(et)]. If the m.s. (G, K, R) and model ¢ can be formally described in
Kreisel's FC, the preceding reasoning can be formalized in FC, and thus
in particular, if ¢(A, G) = F, f- ,(et ~ S)A(et) in FC, giving a counter-
example to the validity of A.

To extend this treatment to quantifiers, consider first the following
countermodel to (x) (P(x) v Q). =:> •(x)P(x) v Q:

{a}
pea)

G
Figure 3.

{a, b}
P(a),Q

H

We have ¢(P(x), G) = ¢(P(x), H) = T, when x is assigned a, but
¢(P(x), G) = ¢(P(x), H) = F when x is assigned b. Further, ¢(Q, G) = F,
¢(Q, H) = T, GRH but not HRG, and ljJ(G) = {a}, ljJ(H) = {a, b}. All
this information is included in the diagram. It is easily verified that
¢«x) (P(x) v Q), G) = T, but ¢«x)P(x) v Q, G) = F. Intuitively, we can
interpret the situation as follows: Identify the elements a and b with the
integers °and 1, respectively. Let R be Fermat's last theorem, and let
Q be R v ,R. Let V be the species containing 0, and containing 1 if Q is
true (i.e., V = {mlm = °v (m = 1 A Q)}), and let x be a variable ranging
over V. Let P(x) be the statement x = 0. Then, already at the present
situation G, we can assert V s; {a, l}, and 1 E ViffQ; so we can assert
(x) (P(x) v Q). But so long as we have not advanced to the situation H,
where Fermat's last theorem has been decided, so that we can assert Q,
we cannot assert (x)P(x) v Q.

N.B. It should be remarked that (x) (P(x) v Q). =:> •(x)P(x) v Q holds
in any quantificational model such that ljJ(H) is constant.

Thus, in general, if the variables in a formula A range over a domain
D, then for each situation H, ljJ(H) is the species of all individuals known
to be in D on the basis of the information available at H. (So, in the
case of the paragraph above, at the present situation G, ljJ(G) = {O}; but
when at H, Q has been proved, ljJeH) = {a, I}. Since D is to contain an
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element, we must know at least one element ofD from the outset, so that
I/J(G) must contain at least one element. The restriction that HRH' is to
imply I/J(H) C;; I/J(H') should now be obvious on the intended interpreta-
tion. Notice that, to assert in a situation H that for every element x of
D, P(x) is true, we must know not only that P(x) is true for every x in
I/J(H), but also that it is true for every x which may later be proved to be
in D; i.e., for every x in I/J(H'), where HRH'; and this is exactly the
inductive clause for universal quantification. On the other hand, to assert
the existence of an x in Dsuch that P(x) is true, we need to find an element
x which has already been proved to be in D (i.e., which is in I/J(H)), and
such that P(x) is true; and this is exactly what the condition on existential
quantification requires.

These facts can again be stated more formally in terms of the theory
of absolutely free choice sequences. Suppose we are given an (intuition-
istically defined) countable tree m. s. (G, K, R) in which D, and hence
I/J(H} for each H is countable. Then, we can identify both the elements of
K and the elements of D with natural numbers, identifying G in particular
with O. We then associate with (G, K, R) a spread S of absolutely free
choice sequences, defined just as above. Further, for any a.f.c.s. a in S, let
D" be the species of all natural numbers n such that there is a natural
number x such that n E I/J(a(x)). Let x, be a variable ranging over D" (i.e.,
(x,,) ( ... ) isto be interpreted as (x)(x E D" ::l ... ) and similarly for (3x,,)).
Then since «(O) = 0 = G, and I/J(G) contains a natural number, D" has an
element for all a. Let ¢ be an (intuitionistically defined) q. model on (G,
K, R)for some formula A. Given any atomic subformulaP'(x., ... , xn) , and
an a.f.c.s. a of S, we associate with these two an assertion pea, x I, , ... ,

xn), where the variables XI~' ... , xn~ range over D", and where pea,
XI~' ... , xnJsays that ¢(pn(x l , •.• , xn), m) = T for some m on a, when
Xi~ is assigned to the variable Xi (i = 1, ... , n; note that Xi~ E D" C;; D).
Given formulae A( ct, x I~' •.. , xnJ and B(a, YI~' ... , ymJ associated with
A(x l , ... , xn) and B(y I' ... , Ym), respectively, associate A(a, XI~' ... , xnJ
/I B(a, YI~' ... , YmJ with A(x l , ... , xn) /I B(YI' ... , Ym), and similarly for
the other connectives.

Further, associate (xi)A(a, XI~' ... , xnJ with (xi)A(x l , ... , xn), and
similarly for the existential quantifier. Then, we prove, by induction,
that, for any mE K, if A(x l , ... , xn) contains only the free variables
listed and XI' ... , Xnare assigned ai' ... , anE I/J(m), then if ¢(A(xI' ... ,
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x n) , m) = T[ =F] relative to this assignment, we have in FC (a t S)
((3x) (a(x) = m) ::::> A(a, aI' ... , an» [.,(a t S)((3x) (a(x) = m) ::::> A
(a, aI' ... , an))]. In particular, if m = 0 = G, since (a t S) (3 x) (a(x) =
0), we get (a tS)A(a,a l, ... ,an) [.,(atS)A(a,al, ... , an)]. Thus, if
A does not contain free variables, and ¢(A, G) = F, we get a proof in
FC that A is not generally valid.

To translate, then, the example given above into FC, notice that,
where B is the full binary spread,

(a) (a t B)(x)((3y) (a(y) = x) ::::> (x = 0 V (3y) (a(y) = 1»),
but also

(b) ,(a t B)((x)((3y) (a(y) = x) ::::> X = 0) v (3y) (a(y) = 1»).
Thus we have refuted the "law" (x) (P(x) v Q). ::::> •(x)P(x) v Q; for if it
held, it would hold for any free choice sequence a, with x ranging over
the species of all z such that (3y) (a(y) = z), contrary to (a) and (b).
Notice that, since (a) is a triviality and (b) follows from the fan theorem,
we could simply have used the ordinary theory of free choice sequences
instead of Fe.

We remark that, following Dyson and Kreisel [9], the countermodels
in FC that we have described, assigning certain infinite sequences of
natural numbers to formulae, can classically be interpreted as counter-
models in Baire space (the space of all sequences of natural numbers,
with the usual topology). In fact, by examination of the countermodels
actually produced below, it follows that every unprovable formula has a
countermodel in the Cantor set, as Dyson and Kreisel assert.

REMARK. The following remarks on the uses of absolutely free choice
sequences are not relevant to the main point of the present paper, but
will be added here:

1. All the theorems which are proved in the last chapter of Heyting
[12], using Brouwer's method of free choice sequences depending on the
solving of problems, can be carried out in Fe. To take the first example
given by Heyting: to show that it is absurd that, for every real number
a, a i= 0 should imply a # O. For if this were true, then for any free
choice sequence a in the binary spread, by associating with a the real
number
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00

~ rx(x)/2x
,

x=o

we could show that -,(x)(rx(x) = 0) ~ (3x) (rx(x) = 1); hence, in particu-
lar, this would hold for absolutely free choice sequences. But it is easy
to show, in FC, that (rx ~ B) -,(x)(rx(x) = 0). Hence we need only show
in FC that -,(rx ~ B)(3x)(rx(x) = 1); but this easily follows from the fan
theorem, since (rx ~ B)(3x)(rx(x) = 1) would imply (3m)(rx ~ B)(3x S m)
(C«(x) = 1), which is absurd. Similar treatments are possible for all the
refutations of classical theorems treated by Heyting by this method in
[12].

I think it probable that such treatments in FC will extend to all the
counterexamples to classical theorems which Brouwer gives by his
method; but I have not made a survey of the literature.

A careful reader of the present section on the interpretation of our
models will find it plausible that, conversely, a good deal of the inter-
pretation, at least for propositional calculus, that has just been carried
out in Fe, could be carried out using Brouwer's method of ips depending
on the solving of problems.

2. The following example, which refutes both Kuroda's conjecture
(cf. [13]) and Markov's principle (cf. [14]) in FC, was inspired by ap-
plying the methods of the present section to obtain a countermodel to
(x) -, -, A(x) ~ -, -, (x)A(x). Let S be the finitary spread consisting of all free
choice sequences o: such that «(x + 1) = «(x) or «(x + 1) = «(x) + I
for every x. We show in FC

(a)
(b)

(rx ~ S)(m)-'-'(3n) (rx(n) ~ m)
(rx ~ S)-,(m) (3n) (rx(n) ~ m).

To prove (a), let o: be an a.f.c.s. in S, let m be an integer and suppose for
reductio ad absurdum that -'(3n)(rx(n) ~ m). Then, since o. is absolutely
free, by axiom 5. 1 of FC, there is an initial segment iX(x) of a such that
(*) (13 t S) ((j(x) = iX(x) ~ -,(3n) (p(n) ~ m». Now rx(x) < m, for other-
wise (3n) (rx(n) ~ m). Hence, since every ips on S is non-decreasing, for
all y < x, rx(y) < m. Now (*) asserts that, if we have chosen the first x
components of 13 so that P(x) = iX(x) , we can never choose pen) ~ m
for any n. But by axiom 5.3 of FC, there are a.f.c.s.'s 13 in S, satisfying
the conditions P(x) = iX(x) and f3(x + i) = «(x) + i (0 sis m - rx(x»,
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since this finite sequence of choices accords with the spread law of S.
But then if n = x + m - a(x), {len) = m, contrary to (*).

To prove (b), let a be an a.f.c.s. in S, and for reductio ad absurdum
assume (m) (3n) (a(n) ~ m). Then, again by axiom 5.1 of FC, there is
and x such that (**) ({l ~ S) (~(x) = ii(x) ::) (m) (3n)(~(n) ~ m». Given
any a.f.c.s, {l in S, assign a value f({l) as follows: If ~(x) ¥ ii(x) , let
f({l) = 0; if ~(x) = ii(x), let f({l) be the least n such that {len) ~ a(x) + 1.
By (**), f is well defined for all such {l, so by the fan theorem there is
some finite integer p such thatf({l) is wholly determined by ~(p). We can
thus write f({l) as f(~(p». Clearly, by the definition of J, p ~ x. Now,
again using axiom 5.3 of FC, determine {l by requiring ~(x) = ii(x) ,
{l(x + i) = a(x) (0 ::::; i ::::; P - x). Then (**) asserts that {l(f(~(p»).,~

o(x) + 1. But this is clearly absurd, since again by 5.3 we are perfectly
free to continue the choices by {l(p + j) = rx(x) (0 ::::; j ::::; f(~(p» -- p), so
that, takingj =f(~(p» -p, we would get {l(f(~(p») = «(x) < «(x) + 1.
So (b) is proved.

We will now use (a) and (b) to refute Kuroda's conjecture [13] and
Markov's principle [14]. Kuroda's conjecture asserts that for m a number
variable, (m) -, -,A(m) implies -, -, (m)A(m). Using Kuroda's conjecture, we
could derive from (a) the assertion (rx ~ S) -, -, (m)(3n)(rx(n) ~ m), which
directly contradicts (b); so Kuroda's conjecture is refutable in FC.
Similarly Markov's principle asserts that, for a decidable predicate A(x)
and number variable n, -, -, (3n)A(n) implies (3n)A(n). But, if we take A(n)
to be rx(n) ~ m, then A(n) is primitive recursive and hence decidable.
Then Markov's principle would allow us to derive (rx ~ S) (m) (3n)
(rx(n) ~ m) from (a), again contradicting (b).

In spite of the proofs by G6del and Kreisel that strong completeness of
Heyting's predicate calculus implies certain forms of Markov's principle,
I am unable to see how to convert these results into a proof in FC that
Heyting's predicate calculus is not strongly complete, and I doubt that
such a conversion is in fact possible. If S' is the spread consisting of all tx
such that there is a {l in S such that (x) (rx(x + 1) = {lex»~, it is easy to
conclude from the present results that (rx ~ S') -'(3n)(rx(n) ~ «(O) and
that -,(rx ~ S') (3n)(rx(n) ~ rx(O»; but, since rL here ranges over absolutely
free choice sequences of S' and not ordinary free choice sequences, we
are unable to apply Theorem 1 of Kreisel [15] to conclude that Heyting's
predicate calculus is not strongly complete.
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1.2. Relationship to the Beth models

In this section, we discuss the relationship of the present model theory
to that of Beth [8]. We will show that the present models can be "trans-
lated," in a natural way, into Beth models. Using an intuitive inter-
pretation of the Beth modelling, we will also show that the mapping
leads to an interpretation of our own quantificational models which is
alternative to that of the previous section; in this interpretation, the
variables always range over the species of natural numbers.

This section can be omitted, if desired, without loss of continuity.
First, we present the notion of Beth model in our terminology as

follows: Let (G, K, S) be a tree, and let R = S*, so that (G, K, R) is a
tree m.s. By a path in the tree (G, K, S) we mean a sequence {H;} of
elements of K, indexed on either the sequence of natural numbers or on
some finite initial segment thereof, satisfying the conditions: (a) H o = G;
(b) for i > 0, H;_ISH;; (c) if {HJ has a last element H m H, is an end-
point of (G, K, S). If some H; = H, we say the path is through H. Let
B be a subset of K. If every path through H intersects B, we say that
H is barred by B. Thus, for example, H is barred by {H}.

By a Beth model on (G, K, S), we mean a binary function IJ(P, H)
satisfying the following conditions: (a) rJ(P, H) = T or F, where P is
atomic and HE K. (b) If HSH' and rJ(P, H) = T, then rJ(P, H') = T.
(c) IfH is barred by Band rJ(P,H') = T for every H' EB, then rJ(P,H) = T.

Given a Beth model n, we define by induction values rJ(A, H) for an
arbitrary formula A of the propositional calculus. Suppose rJ(A, H) and
rJ(B, H) have already been defined. Define rJ(,A, H), rJ(A A B, H), and
rJ(A :::> B, H) exactly as was done above for a model ¢; simply replace
"¢" by "IJ" throughout. Finally define rJ(A v B, H) = T iff there is a
subset B ofK such that H is barred by Band rJ(A, H') = Tor rJ(B, H') =
T for every H' E B; otherwise, I1(A v B, H) = F. Notice that if I1(A, H) =
T or I1(B, H) = T, I1(A v B, H) = T; we can take {H} as the set B
barring H.

Notice that condition (b) above actually implies the strengthened
condition (b'): If IJ(P, H) = T and HRH', then I1(P, H') = T. Using this
fact, it is easy to prove by induction that the properties (a) - (c) actually
hold not only for an atomic formula P, but also for an arbitrary formula A.

As in the case of models ¢, the inductive definition of I1(A, H) just
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given depends on the law of the excluded middle. Again as in the case
of a model, we can correct the situation by modifying the definition of a
Beth model. We leave the modification to the reader.

A Beth model '1 on a tree (G, K, S) is called finitary if (G, K, S) is
finitary. Beth's own version of his models in [8] is actually equivalent
to our notion of a finitary Beth model.

We call a Beth model '1 a strong Beth model iff for all HE K and for-
mulae A and B, '1(A v B, H) = T implies '1(A, H) = T or '1(B, H) = T.
Notice that, on account of the validity of condition (b') above, a Beth
model '1 is also a model in our sense. However, since the inductive clause
for disjunction in a Beth model differs from the inductive clause for our
sense of model non-atomic formulae may be given different values
according as '1 is considered as a model in our sense or as a Beth model.
A strong Beth model is precisely a Beth model in which this eventuality
never happens.

The intuitive rationale behind the Beth models is simple: Again the
elements ("nodes") of the tree model (G, K, S) are points in time, or
evidential situations; but we no longer suppose that we are allowed to
remain at a given point H as long as we please. On the contrary, if H
is a node of the tree (G, K, S), we are forced, unless H is an endpoint,
to "jump" within a fixed, finite time to one of the successors of H in the
tree. (Paradigmatic of such a game, of course, are free choices in an
(absolutely) free choice sequence (J(: after each choice we are forced to
make another, within a finite length of time, unless the spread-law
states that the choice we have just made is terminal.) '1(P, H) = T[ =F]
means that P has been established [has not yet been established] at the
time H, so the conditions (a) and (b) on '1 are clear. If H is barred by
B ~ K, condition (c) says if we know that P will be established at any
H' E B, then we already know at H that P is true; for, once we are at H,
we must get to some H' E B in a finite time. Similarly, the inductive
clause which defines '1(A v B, H) observes that to establish A v B at H
it is sufficient to know that, in a finite number of "moves," we must
either establish A or establish B; that is to say, it suffices to know that
there is a B which bars H such that every H' E B either establishes A or
establishes B. The inductive clauses for the other connectives are as
before.

As in section 1.1, we can give a more precise justification of the
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definition in terms of absolutely free choice sequences. As before, we
identify the elements of the (countable) tree (G, K, S) with natural
numbers, associating 0 with G. We then consider the spread S of all
absolutely free choice sequences of elements of K whose first term is 0
and which satisfy the condition that a(n)Sa(n + 1), unless a(n) is an
endpoint of (G, K, S), in which case a(n) = a(n + 1). For any atomic
P, associate a formulaP(a) which says (3n) (3x) (a(x) = n A I/(P, n) = T).
We then define inductively a formula A(a) associated with an arbitrary
formula A, exactly as in section 1.1. Again as in 1.1, if IJ(A, 11) = T
[=F] we can derive (a ~ S) «3x)(a(x) = n) ~ A(a)) [.(a ~ S)«3x)
(a(x) = n) ~ A(a))] in FC

We now show how the ideas of section 1.1 can be modified so as to
show how every model can be transformed into at. "equivalent" strong
Beth model. Let ¢ be a model on a m.s. (G, K, R). Define a tree (G',
K', S') as follows: Let K' be the set of all finite non-empty sequences
{H;}7= l' where Hi E K(1 sis n), H 1 = G, and HiRH i + 1(1 s i < n).
Let G' be the sequence whose sole term is G. We say, for H~, H~ E K',
that H~S'H; iff H~ is the initial segment of H~ formed by omitting the
last term of H;. (Then, if R' = S'*, H~R'H; iff H~ is an initial segment
of H~.) For any H' E K', let l(H') be the last term of H', then l(H') E K.
Define IJ(P, H') (P atomic, H' E K') by IJ(P, H') = ¢(P, l(H')).

Let H' E K', H' = {HJ~= l' We define an associated path P(H') =
{Hj}.f:=o as follows: For 0 s j < n, let H, be the unique initial segment
of H' with j + 1 terms. For j :2: n, let Hi be the j + I-termed sequence
whose first n terms are H 1 , ... , H, and whose other terms are all equal
to H n • So for j :2: n, let l(Hi) = Hn- Clearly P(H') is a path through H';
further, for any Hi on this path, l(Hj)Rl(H').

We now assert:

THEOREM 1 (First part): IJ is a strong Beth model. Further IJ is equivalent
to ¢ in the sense that IJ(A, H') = ¢(A, l(H')) for any H' E K' and formula
A. In particular IJ(A, G') = ¢(A, G) for any A.

PROOF. First we show that IJ is a Beth model. Condition (a) is clear.
For (b), if IJ(P, H~) = T and H~ S'H;, then l(H~)Rl(H;). Since ¢(P,
l(H~)) = IJ(P, H~) = T, and since ¢ is a model, ¢(P, l(H~) = T, hence
IJ(P, H;) = T. For (c) let H' be barred by B ~ K'. Then the path P(H')
intersects B. Let H" be some point of the intersection. To establish (c)
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it is sufficient to show that if 'l(P, H") = T, 'l(P, HI) = T. Since H" is
on the path P(H'), l(H")Rl(H'). Since 17(P, H") = T, <p(P, l(H"» = T.
Hence since l(H")Rl(H'), 'l(P, H') = <p(P,l(H'» = T, which proves (c).
So n is a Beth model. We now establish 'leA, H') = <p(A, l(H'» for any
A; if we establish this, it will obviously follow that the Beth model 'l
is strong. The result holds by definition for atomic A; for other A we
prove it by induction. The only non-trivial case is that of disjunction.
Suppose 'leA, H') = <p(A, l(H'» and 'l(B, H') = <p(B, l(H'». If <p(A vB,
l(H'» = T, then either <p(A, l(H'» = 17(A, H') = T, or <p(B, l(H'» =
'l(B, H') = T. In either case, 17(A v B, H') = T. Conversely, if 'l(A v B,
H'! = T, then thereisasetB <;; K',barringH/andsuchthat'l(A,H") = T
or 'l(B, H") = T for every H" E B. Choose H" in the intersection of B
with P(H'). Suppose, say, that 17(A, H") = T. Then <p(A, l(H"» = T.
Since l(H")Ri(H'), <p(A, l(H'» = T, and hence <p(A v B, l(H/» = T, as
desired. Q.E.D.

The construction just given is obviously closely related to the method
used informally in section 1.1 to interpret a model in Fe. Under the
transformation given by Theorem I, the two point countermodel to the
law of excluded middle in Figure 2 now becomes:

pI---~1

p 1 p l
p l .l
p l .l

i I

Figure 4a.

1" ..
p~

I
p l

pl
Ip!
i

It is clear that the model would not essentially change if the infinite
vertical branches were reduced to a single point:

pI pI p[ p[oo,
I

I I II
I i iI

Figure 4b.

Figure 4b is exactly Beth's countermodel in [8] to P v-P.
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Since 11 is a strong Beth model, it is also a model; thus the method
allows us to transform a model <p on an arbitrary m.s. (G, K, R) into an
"equivalent" model I] on a tree m.s. (G', K', R'). However, the set K'
will be infinite, even where the original set K was finite, since the tree
(G', K', S') has no endpoints. (Also, if (G, K, R) is, say, itself a countable
but finitary tree m.s., (G', K', R') will not be finitary.) We avoid these
difficulties by a modification of the method. First, we observe that the
relation R, in any q.m.s., may, without loss of generality, be taken to be
anti-symmetric (i.e. a partial ordering):

LEMMA: Let (G, K, R) be any q.m.s., with domain function Ijt(H). For
H E K, let H be the set of H' E K such that HRH' and H'RH. Let K be
the set of all such Hfor every H E K. For H, H' E K, let HRH' ijfHRH',
and let $(H) = Ijt(H). Then (G, K, R) is a q.m.s. with domain function l/i.
Moreover, if <p is a quantificational model on (G, K, R) and ¢(P", H) =
<p(P" , H) for any HE K, then ¢ is a quantificational model on (G, K, R)
such that, for any H E K and for any formula A, relative to any assignment
to its free variables, ¢(A, H) = <p(A, H).

The proof of the lemma is straightforward and is left to the reader.

Theorem I (Second part): Let (G, K, R) be a m.s. such that R is a partial
ordering. Let S be any irreflexive relation such that R = S*. Let K be the
set of all finite non-empty sequences {H i}7=1 such that H 1 = G, and
H,SH i + 1 for every i(l :5: i < n). Let G be the sequence whose sole term
is G. For any H1, Hz E K, let H 1SHz ijfH1 is the initial segment of Hz
formed by omitting the last term of Hz· Let R = S*. Then (G, K, R) is a
tree m.s. Moreover, if <p is a model on (G, K, R), and 11(P, H) = <p(P,1(H))
(where 1 (H) is the last term of Ii for any Ii E K), then Yf is a model on
(G,K,R) such that,for any formula A ofpropositional calculus, Yf(A, B) =
<p(A, 1(H)). If (G, K, R) is finite, (G, K, R) is finite also.

PROOF. It is evident that (G, K, R) is a tree m.s. Since R is anti-symme-
tric and Sis irreflexive, for every positive n, S" is irreflexive also; whence,
if K is finite, K will be finite too. If H1 , Hz E K, and H1RHz, then
1(H1)R1(Hz): so if I](P, H1) = <p(P, 1(R1) ) = T, then, since <p is a model,
I](P, Hz) = <p(P, 1(Hz)) = T also, and thus Yf is a model. It remains to
show, by induction, that, for HE K, and any formula A, Yf(A, H) =
<p(A, 1(H)). The induction step is trivial for v and A. Suppose '1(A =:> B,
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H) = T. Let HI be any member ofK such that HRHI , where H = 1(0).
Then either H = HI' or HSnHI for some n > 0: in either case there
exists HI E K such that HRH I and HI = l(HI). By assumption, either
'1(A, HI) = F or '1(B,Ol) = T, whence, by the induction hypothesis,
either q,(A, HI) = F or q,(B, HI) = T. Since HI was arbitrary (subject
to HRH I , q,(A => B, H) = T. Conversely, suppose l1(A => B, H) = F.
Then for some HI such that HRH I , '1(A, 01) = T and l1(B,HI) = F. By
the induction hypothesis, q,(A, l(HI ) ) = T and q,(B, 1(H1) ) = F; since
l(O)Rl(H I ) , q,(A => B, l(H)) = F, as desired. The case of' is quite
similar. Q.E.D.

Notice that the situation contrasts with that in S4, where it is often
impossible to replace an arbitrary finite model by an equivalent finite
tree model (cf. [2]).

The third part of Theorem 1 extends the procedure for finding a tree
model equivalent to an arbitrary model to quantificational models.
Here we cannot use the same construction as a tree q. model and as a
Beth q. model, as will be seen when we define the latter, in preparation
for the fourth part of theorem 1.

THEOREM 1 (Third part): Let (G, K, R) be a q.m.s. with domain function
ljJ(H). (R need not be anti-symmetric.) Let S be any relation (not necessarily
irreflexive) such that R = S*. Let q, be a quantificational model on (G,
K, R). Let (G, K, R) be defined as in the second part of the theorem, and
let ilI(H) = ljJ(l(O)). Let '1(r, H) = cp(r, l(A)) for each predicate letter
P" and each H E K. Then '1 is a quantificational model on the q.m.s.
(G, K, R) with domain function ill. Further, relative to a given assignment
to the free variables ofA, '1(A, H) = q,(A, l(H)): in particular, '1(A, G) =

q,(A, G).

The proof is left to the reader. Notice that, since S is not required to be
irreflexive, it may in particular be R itself: thus (G, K, R) may be as in
the second part of Theorem 1, or may be identical with the Beth model
(G', K', R') of the first part. As a quantificationa1 model, however, '1
will not be a Beth quantificationa1 model, to the definition of which we
now turn.

Unlike our own models, with their variable domains (a feature we
have noted to be essential), the Beth quantificationa1 models are based
on a fixed domain D. We define a Beth q.m.s. to be a Beth m.s. (G, K, R),
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together with a domain D with at least one element. A Beth q, model Yf
is a binary function Yf(pn, H), whose value is T or F when n = 0, and is a
subset of D" for n ~ 1. We require, in addition to the conditions (b)
and (e) above on n, the analogues for n ~ I: (bn). If HRH', Yf(r, H) S;

«r: H'); (en) if H is barred by B S; K, then

n Yf(r, H') S; Yf(pn, H).
H', B

For an atomic formula r(x l , ... , xn), define Yf(r(x I , ... , x n), H) = T,
relative to an assignment of aI' .. , anEDtoxl , ... ,xmiff(a I , ... ,an)E
Yf(r, H); otherwise, =F. We then define the values for more complex
formulae by induction. The inductive clauses for the propositional con-
nectives are as above. Let the formula A(x I , ••• , X m y) contain only the
free variables listed. We define Yf«y)(A(xI , ... , x m y), H) = T, relative
to an assignment ofa, ED to Xi (1 ::::; i ::::; n), iff Yf(A(x I , ••• , (xn,y), H) = T
relative to any assignment of an element bED to y and a, to Xi; otherwise,
= F. Again Yf«3y)A(x I , ••• , X n, y), H) = T when a, is assigned to Xi iff
there is a B S; K such that H is barred by B and for any H' E B there is a
bED such that Yf(A(x I , .•• , X m y), H') = T when ai is assigned to Xi

and y is assigned b; otherwise, = F.
Using the inductive clauses and the conditions on atomic formulae,

we can prove the analogues of (b) and (e) for an arbitrary formula A,
relative to a fixed assignment to its free variables in a Beth quantificational
model n, If Yf(A, H) = T and HRH', Yf(A, H') = T. If H is barred by B
and 1'f(A, H') = T for any H' E B, then Yf(A, H) = T.

Suppose we are given a quantificational model ¢ on a m.s. (G, K, R)
such that

u = U l/I(H)
H,K

is countable. We will transform ¢ into a Beth quantificational model
whose domain D is the set N of non-negative integers. Let (G/, K /, S')
be as above, and R' = S'*. Notice that N is a countable union of disjoint
countable sets; call these NJi = 0, ... ). We have a procedure, which, for
each H' E K', generates certain elements of N at H'; the set of elements
generated at H' will be identical with

n

UN;
i=O



SEMANTICAL ANALYSIS OF INTUITIONISTIC LOGIC I 113

for some n. Further, ifP is any path in K', every pEN will be generated at
some H' E P. Further, the procedure will satisfy the condition that if
H'R'H", every element generated at H' is also generated at H". An ele-
ment generated at H', but not at its predecessor (if any exists), is said to
be introduced at H'. Further, any natural number n generated at H' is
assigned a unique element of t/J(l(H')); this element is called v(n, H').
The v-function will satisfy the condition that if n is generated at H', and
H'R'H", then v(n, H') = v(n, H"). We give an inductive definition on
the tree (G', K', S') of a procedure with these properties; at any stage,
satisfaction of these properties will be taken to be part of the inductive
hypothesis. First, consider the origin G' of the tree. We generate exactly
the elements of No at G', and we define v(n, G'), for n E No, in such a way
that No is mapped onto t/J(G). (This is possible since t/J(G) is at most
countable. All arbitrary choices can be made precise, if desired, using
well-orderings of the denumerable sets Nand Ll.) Suppose we have
defined the set of all integers generated at H' it is, say,

m
(M = U N;)

i~O

and have defined v(n, H') for each n E M. Let H'S'H". Then introduce
all elements of Nn + l' so that the set of elements generated at H" is
M v N m + l' Define v(n, H") for n E M v Nm + 1 by v(n, H") = v(n, H')
for n E M, and such that v(n, H") maps Nn + 1 onto t/J(1(H")). Then the
inductive definition is complete.

We now define a Beth quantificational model Yf whose domain is N
on the Beth m.s. (G', K ' S') as follows: If P is a propositional letter,
define Yf(P, H') = ¢(P, l(H')). For an n-adic predicate letter n define
Yf(r, H') to be the set of n-tuples (ml' , m n) of natural numbers such
that, for every H" E K' such that m l , , m; are all generated at H" and
H'R'H", (v(ml , H"), ... , v(mm H")) E ¢(r, l(H")).

THEOREM I: (Fourth part): Yf is a Beth quantificational model on (G',
K ', S') whose domain is N. For any H' E K' and formula A(xl , ... , x n) ,

whose free variables are exactly those listed, and natural numbers m l' ... ,

m.; which have been generated at H', Yf(A(x1 , ••. , x n) , H') = T when
Xl' ••• , X n are assigned m l , ... , m i; respectively, if and only if ¢(A(x1 ,

... , x n) , l(H')) = T when Xl' ••. , X n are assigned v(m 1, H'), ... , v(m n,
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H'), respectively. In particular (n = 0), ifA is a closedformula, rJ(A, H') =
cf>(A, l(H'».

PROOF. We show first that rJ is a Beth quantificational model. Con-
ditions (b) and (bn) are obvious. Condition (c) is proved as in the first
part of the theorem. Condition (en) (n ~ 1) is proved as follows: Suppose
H' E K' is barred by B £; K', and suppose {m I' ... , mn)is not in rJ(pn, H').
We show that there is an H" E B such that (m l , ... , mn) is not in
rJ(pn, H"). Since (m I' ... , mn) is not in I/(pn, H'), there is an H~ E K' such
that H'R'H~, m I' ... , mn are all generated at H~, and (v(m I' H~), ... ,
v(mn> H~» is not in cf>(pn, l(H~)). As in the first part of this theorem, let
P be the path P(H~) through H~, with the property that, for H" on the
path and H~R'H", l(H~) = l(H"). Then P intersects B in an element H".
If H"R'H~, then since clearly (m l , ... , mn) is not in rJ(P", H~), by con-
dition (b"), it is not in rJ(pn, H"). If H~R'H", then since l(H") = l(H~),

and v(mi' H~) = v(mi' H"), we have «v(m l , H"), ... , v(mn, H"» tt ¢(pn,
l(H"», so that (m l , ... , mn) ¢ rJ(P", H"), the desired conclusion.

We now prove the assertion in the second sentence of the present Fourth
part by induction; the third sentence is a special case. Let A(x l , ... , nX)
be atomic. If n = 0, see the proof of the first part of this theorem. If
n > 0, write A(xl , ..• , xn) as P"(x l , ... , xn) . Suppose m l , ... , mn are all
generated at H' E K'. Let H = l(H'), and a, = v(mi' H'). If c/>(P"(XI' ... ,
xn) , H) = T, when Xi is assigned a, (l ~ i ~ n), then (a I' ... , an) E

cf>(P", H). If H'R'H~ (H~ E K'), let H o = l(H~). Then HRHo, hence
aI' , an E ",(Ho) . Also a, = v(mi' H') = v(mi , H~). This shows that
(m l , , Inn) E rJ(pn, H'), hence rJ(pn(x l , ... , xn) , H') = T, relative to the.
assignment of m, to Xi' as desired. On the other hand, if cf>(P"(x I' •.. , xn) ,

H) = F relative to this assignment, and hence (ai' ... , an) ¢ cf>(pn, H),
we clearly have (m l , ... , mn) ¢ rJ(P", H'), again as desired. The inductive
clauses for the propositional connectives are as in the first part of this
theorem. Suppose the result proved for A(xl , ... , X n, y). Again let m,
be assigned to Xi' let H = l(H'), and let a, = v(mi' H') (i = 1, ... , n).
Let cf>«3y)A(xl , ••• , X n , y), H) = T when Xi is assigned a.. Then there
is e b e ",(H) such that cf>(A(x I' ... , X n, y), H) = T when in addition y is
assigned b. v(p, H') maps the elements generated at H' onto ",(H), so let
v(p, H') = b, where p is generated at H'. Then, by inductive hypothesis
rJ(A(xl , •.. , X n, y), H') = T when Xi is assigned m, (i = 1, ... , n) and
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y is assigned p; hence '7«3y)A(x I' ... , X n, y), H') = T when x, is
assigned m.; On the other hand, suppose <fJ«3y)A(x l , ••• , X n' y),
H) = F when Xi is assigned a.. Let H' be barred by B s; K' and
let P be a path in K' through H' with the property that for
H" E P and H'R'H", I(H") = I(H') = H. Let H" be in the intersec-
tion of Band P. Suppose there were apE N such that '7(A(x I' ... ,
X n' y), H") = T when x, is assigned m, and y is assigned p. Now it is
clear from the definitions that there is an H'" E P such that H"R'H'"
and p is generated at H"'. Let v(p, H''') = b. Then, since H"R'H''',
'7(A(x l , ••• , X n, y), H''') = T when x, is assigned m, and y is assigned p.
Hence by inductive hypothesis, <fJ(A(xl , ••• , X n, y), I(H"'» = T when
x, is assigned a, and y is assigned b. Further b = v(p, H'''), so
bE"'(I(H'''». Hence <fJ«3y)A(x l , ..• ,xn,y),I(H'''»=T when Xi is
assigned a.. But since H'" E P, I(H"')RH. Hence <fJ«3y)A(x l , • '." X no y),
H) = T when Xi is assigned a., contrary to hypothesis. This reductio
shows, then, for any B s; K' such that H' is barred by B there is an
H" E B such that, for every pEN, '7(A(x 1, ••• , X n• y), H") = F when x,
is assigned m, and y is assigned p. This in turn shows that '7«3y)A(xI' ... ,
X n , y), H') = F when Xj is assigned m.: Thus the case of existential quanti-
fication is complete; we now treat universal quantification. Keeping
notations as before, suppose <fJ«y)A(x l , ••• , X n, y), H) = T when Xi is
assigned a.. Suppose pEN. Let B s; K' be the set of all H" E K' such that
H'R'H" and p is generated at H". Let b = v(p, H") E "'(I(H"». Since
H'R'H", HR1(H"), and hence since <fJ«y)A(x l , ••• , X n, y), H) = T when
x, is assigned a., it follows that <fJ(A(x1 , ••• , xn,y), I(H"» = T when
x, is assigned a, and y is assigned b. Hence by inductive hypothesis,
'7(A(x I' ... , X n, y), H") = T when Xi is assigned m, and y is assigned p.
Since H' is barred by B and the conclusion held for any H" E B, it follows
(since '7 is a Beth quantificational model), that '7(A(x l , ... , X n, y), H') = T
when x, is assigned m, and y is assigned p. Since p was arbitrary, it
follows that '7«y)A(x I' ... , X n, y), H') = T when Xj 'is assigned m.; as
desired. Suppose finally that <fJ«y)A(x 1, ••• , X no y), H) = F when Xi is
assigned ai' Then there is an HI E K and e b e ",(HI) such that HRHI

and <fJ(A(xI' ... ,xn,y),HI) = Fwhenyis assigned b and x, is assigned
a.. Let H'l be formed by adding HI as an additional term to the finite
sequence H'. Then H'S'H;, H; EK', I(H;) = HI' and there is a p
generated at H; such that v(p, H~) = b. Then by inductive hypothesis
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1](A(Xl' ... , x n, y), Hi) = F when Xi is assigned m, and y is assigned p.
Hence 1]«y)A(x1 , ••• , x n' Y), H~) = F when Xi is assigned m.; but since
H'R'H'b 1]«y)A(x1 , ••. , Xm y), H') = F relative to this same assignment.
This concludes the proof of the theorem. Q.E.D.

The fourth part of Theorem I shows how any quantificational model
¢ can be transformed into a Beth quantificational model 1]. Essentially
if we have arrived at a certain position H' E K' and if H = 1(H'), the
numbers introduced at H' are "identified" with certain elements 0 f
I/I(H) by v (n, H').

An example, following the spirit though not the letter of the proof of
Theorem I, fourth part, converts the countermodel of section I . I, Figure
3, for (x) (P(x) v Q). ~ . (x)P(x) v Q into a corresponding Beth quantifica-
tional countermodel in the natural numbers. In Figure 3, there are two
evidential situations, G and H; I/I(G) = {a}, t/J(H) = {a, b}. As natural
numbers are generated, as long as we remain at the evidential situation
G, we must "identify" each natural number with a (and therefore give
it all properties assigned to a in Figure 3), but if we pass to H, we must
"identify" some natural number with b. These considerations lead to the
following figure:

P(O) P(1) P(2) P(3)

i
Q i H.

I

i---r
Q i H. Q i H,

I I
Figure 5.

This is exactly Beth's counterrnodel to (x) (P(x) v Q). ~ . (x)P(x) v Q.
As long as we remain on the horizontal branch but are uncertain that
we will continue thereon, we have not established (x)P(x) v Q; but on
the other hand, for each natural number x, either P(x) or Q is eventually
established. We have not mechanically applied the proof of Theorem I
to obtain this model, but instead have reproduced its spirit; in particular,
we have introduced a simplification analogous to that required to obtain
Figure 4b from Figure 4a.

Notice that Figure 5 can be interpreted in terms of absolutely free
choice sequences as follows: Let a be an absolutely free choice sequence
on the binary spread. Let P(x) abbreviate a(x) = 0, and let Q be (3x)
(a(x) = I). Then, if x ranges over the natural numbers, clearly (a ~ B)
(x) (P(x) v Q), but ,(a ~ B) «x)P(x) v Q). And, analogously, as Kreisel
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and Dyson (Kreisel [II] and Dyson & Kreisel [9]) have observed, count-
able Beth quantificational models can always be interpreted thus. So
Theorem I gives a new intuitive interpretation of our models, in which
all quantifiers range over the natural numbers.

Since below we will obtain a completeness theorem for countable
quantificational models, and since such models can always be trans-
formed into Beth (q.) models, our completeness results include those of
Beth. (Beth required his models to be finitary, but we will show in part
II how to obtain finitary Beth models.)

1.3. Other interpretations ofthe models

Sections 1. I and 1.2 gave interpretations of our models which were
intended to accord with the interpretations intuitionists customarily
assign to their logical constants. In this section we will give two formal
interpretations of the modelling which do not claim any direct intuitionis-
tic content. (Both interpretations are actually direct special cases of the
modelling; they simply consider a restricted class of models.) One inter-
pretation is based on provability in formal systems; it was described
briefly in [3]. The other is based on Paul Cohen's notion of forcing [5].
The two interpretations are intimately related to each other. This section
may be omitted without loss of continuity.

I. Provability interpretation. Let Eo be a formal system, and let E
be an arbitrary extension thereof. Let K be the set of all such E, and let
ERE' iff E' is an extension of E. We define an atomic formula P to be a
closed wff of Eo. (Note that P need not be an atomic formula of Ea.)
We can then build non-atomic formulae out of the P's using the connec-
tives A, ::J, " v. If we define l/>(P, E) = T iff P is provable in E and F
otherwise, then l/>(P, E} is a model on the m.s. (Eo, K, R). Thus for any
complex formula A which is a theorem of the intuitionist propositional
calculus, l/>(A, Eo} = T. If Eo is elementary number theory Z, and P
is Godel's undecidable formula, then l/>(P v ,P, Eo} = F; for P is not
provable in Eo, but it is provable in certain extensions E. The larger
problem, whether Heyting's propositional calculus is complete with
respect to this particular choice of Eo, remains open.

To interpret intuitionistic quantification theory in this manner, we
must assume that the system Eo and its extensions have notions of free
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variables and of constants, and that Eo contains at least one constant.
For any E E K, let I/I(E) be the set of all constants of E. Then if ERE',
I/I(E) s I/I(E'). For every n, define an n-adic atomic predicate P" to be a
formula of Eo with n free variables, together with a I-I function from
the integers I, ... , n to the free variables of P", The variable assigned by
this function to m(1 ~ m ~ n) is called the mth free variable of P".
Define, for n ~ 1, the set ¢(pn, E) s [I/I(E)]n as follows: An n-tuple
(a l' ... , an) of constants in I/I(E) is in ¢(P", E) iff the result of the simul-
taneous substitution of aj(1 ~ i ~ n) for the ith free variable of P" is a
theorem of E. Out of the atomic n-adic predicates (which play the role of
the n-adic predicate letters above), we can build more complex formulae
using the propositional connectives and the quantifiers. ¢(P", E) then
becomes an intuitionistic quantificational model.

It is clear that in the preceding K can be replaced by any subset K'
thereof (e.g., the finitely axiomatizable extensions of Eo). Further,
restrictions, such as recursive enumerability, on the notion of formal
system, can be removed at will. There is also a more "model-theoretic"
variant of the present interpretation of Heyting's predicate calculus,
which eliminates the assumption that E must-contain constants. Further,
the interpretations can be extended in other directions so as to yield new
interpretations of larger parts of intuitionistic mathematics; in particular,
we can give an interpretation of FC which leads to a proof that FC is an
inessential extension of Heyting's arithmetic"). For more on provability
interpretations of intuitionistic and modal logics, cf. [3].

2. Cohen's notion of "forcing," Let D be an arbitrary countable in-
finite set. Let 9 = (90 , ( 1) be a pair of finite, disjoint subsets of D,
and let K be the set of all such pairs. If 9 = (.0/'0' !!J I) and 9' = (9~, 9'1)
are in K, theqdefine 9 R9' (or, f!}' is an extension of 9) iff 9"0 s 9~ and
9 1 S 9~. Further, let I/I(g» = 9 0 u:3'1. Now consider a single monadic
predicate letter P. For any g; E K, define ¢(P,9) = 9 0 . Let K' be the
set of all 9 E K such that 1/1(.9) is non-empty. Then for any g; E K',
(g>, K', R) is a q.m.s., with the associated domain function 1/1. (If we had
modified Heyting's predicate calculus so as to admit the empty domain
and thus permit I/I(Y') to be empty, the rather artificial use of K' in place

1) Kreisel has independently obtained this result using an elimination of free choice
sequences by contextual definition.
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of K could be dropped.) Then ¢ is a model on (g'J, K', R), and for any
formula A built from P using propositional connectives and quantifiers,
the inductive definitions we have given define a truth-value ¢(A, g'J'), for
any g'J' E K', relative to a fixed assignment of elements of D to the free
variables of A. If this value is T, we say that g'J' forces A relative to the
assignment. (Notice that the value of ¢(A, g'J') is clearly independent
of the choice of the "designated" element g'J of (g'J, K', R).)

If D' is a subset of D, we say that g'J , agrees with D' iff g'J~ s D' and
g'J~ s D - D'. We can say that D' forces A (relative to a given assignment
to the free variables) iff there is a g'J' E K' which agrees with D' and forces
A. Notice that if g'J' and g'J" agree with D', they have a common extension
which agrees with D'; thence it easily follows that D' cannot force a
statement together with its negation. Call D' generic iff for every A, and
fixed assignment to the fret: variables thereof, D' forces either A or ..,A.
Cohen proves that generic sets exist: Let {An} be an enumeration ofall the
ordered couples Ai = <Bi , (}i) such that B, is a formula built from P
and (}i is an assignment to its free variables. Define a sequence g'Jn =
(g'J3, g'J~) as follows: g'J0 is the empty pair. e:: 1 is an extension of g'Jn
which forces B; (relative to 8n) if such an extension exists; otherwise it
is g'Jn. Then clearly e-: 1 forces B; or- B; (relative to On)' and D' = u g'J3
is generic.

We say g'J' weakly forces A iff it forces ..,..,A. Noticing (or anticipating)
that all provable formulae of Heyting's predicate calculus are valid in
our model theory, we get the result that any provable formula A of
Heyting's predicate calculus is forced by every g'J' E K'. It is well known
that if A does not contain universal quantification and is classically
valid, ..,..,A is provable in Heyting's predicate calculus. Hence, for A
classically valid and free of universal quantifiers, A is weakly forced by
any g'J' E K'. Further, notice that the formulae forced (weakly forced)
by a g'J' E K are closed under modus ponens: A, A :::> BIB.

If D' is generic and forces ..,..,A, it clearly must force A; hence a non-
empty, generic D' forces every classically valid formula not containing
universal quantifiers. Cohen has proved an even stronger fact: If D'
is generic and A has no universal quantifiers, then (relative to an assignment
to free variables), A is forced by D' ifand only if it is true when the existen-
tial quantifiers (taken as ranging over D) and the propositional connectives
are interpreted classically, and "P(x)" is interpreted as "x ED'," The
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assertion is readily proved by induction on the complexity of A. Since,
classically speaking, a (x) can always be replaced by ,(3xh the restriction
that universal quantifiers be absent is not important.

The definition we have given differs from Cohen's in inessential
respects. (It may be closer to a definition given by Feferman, which we
have not seen1). It is clear that the notion can be extended. For example,
we need not deal with a single predicate P(x); we can deal with several
such, not all of which need be monadic. The modifications needed for
this more general situation should be obvious. Further, we can replace
the countable set D by a set of regular cardinality N,,; K will consist of
disjoint pairs of sets of cardinality less than ~".

Cohen's motivation was radically different from ours, but it is clear
that his notion is intimately related to our model theory. The "deeper"
reasons for this relation may yet be unknown.

It should be noted that Dana Scott had already observed that Cohen's
idea was similar to an interpretation conjectured by Kreisel [17]. And
indeed, if Kreisel's conjectures prove correct, his interpretation of in-
tuitionism will be closely related to ours.

2. Semantic tableaux

In this section we develop Beth semantic tableaux for intuitionistic
logic. The notion developed here is similar to those of [2], [11], which
can be read as background if desired. We deal at each stage of the
construction with a system of alternative sets of tableaux; each alternative
set is ordered in the form of a tree, and the origin of the tree is called the
main tableau of the set. We call the tree ordering relation on an alternative
set "S"; the smallest reflexive and transitive relation containing "S"
is called "R". We can assume, at a given stage of the construction, that
each alternative set is diagrammed on a piece of paper; corresponding
to the system of all the alternative sets of the stage, we have a leaflet of
which the separate sheets of paper are pages.

Given a formula A of Heyting's predicate calculus, to see whether it
is valid we attempt to find a countermodel to A. If A has the form
Al A •.. Am. :=> • B I V ... B n, then what we need is a model ¢, such that
relative to some assignment to the free variables of A, ¢(A j, G) = T and
1)See note at end of paper.
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¢(Bj' G) = F, 1 :0; i :0; m, 1 :0; j :0; n. We represent the situation by
putting A l , ... , Am on the left, and B l , ... , B; on the right of the main
tableau of a construction. We continue the construction, which gives a
systematic attempt to find a tree countermodel to A, by the following
rules, which apply to any tableau of any alternative set of the construction:

NI. If..,A appears in the left column of a tableau, put A in the right
column of that tableau.

Nr. If..,A appears in the right column of a tableau t, start out a new
tableau t l , with tSt", by putting A on the left of t l •

AI. If A A B appears on the left of a tableau t, put A and B on the
left of t.

Ar. If A A B appears in the right column of a tableau t, there are two
alternatives; extend the tableau t either by putting A in the right column
or by putting B in the right column. If the tableau t is in an ordered set
Y, it is clear that at the next stage we have two alternative sets, depending
on which extension of the tableau t is adopted. Informally speaking, if
the original ordered set is diagrammed structurally on a sheet of paper,
we copy over the entire diagram twice, in one case putting in addition A
in the right column of the tableau and in the other case putting B; the
two new sheets correspond to the two new alternative sets. The formal
statement is rather messy: Given a tableau t in an alternative set Y,
if t has A A B on the right, we replace Y by two alternative sets Y 1 and
Y 2, where !f'l = Y - {t} u {tl} and Y 2 = Y - {t} u {t 2}, and t l
[t2 ] is like t except that in addition it contains A [B] on the right. The
tree ordering S1 of the new set Y 1 is precisely the same as S, save that
t l replaces t throughout; and similarly for the tree ordering S2 of Y 2 •

(Formally, Sl agrees with S on !f' - {t}, and, if t' is the predecessor
[a successor] of t, then t'Sltl[tlSlt'].) We say!f' splits into Y l and !f'2'
Similar remarks apply to the rule VI and PI below.

VI. If A v B appears on the left of t, put either A on the left of t or B
on the left of t. (As in the case of Ar, this splits the set !f' containing t
into two alternative sets.)

Vr. If A v B appears on the right of t, put A and B on the right of t.

PI. If A =:> B appears on the left of t, either put A on the right of t
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or put B on the left. (Thus again the set g> containing t is replaced by
two alternative sets.)

Pro If A ::> B appears on the right of t, start out a new tableau t l, with
A on the left of t 1 and B on the right, such that tSt l

•

For a construction involving quantifiers, we associate, at a given stage
of a construction, a set I/1(t) of variables with each tableau t. We start
out the definition of I/1(t) by assuming that, at the initial stage of the
construction, which starts out with a single tableau to, I/1(to) consists
of a single variable x. At later stages I/1(t) is to be enlarged only as re-
quired by the rules Ilr and II below and the stipulation that tSt l is to
imply that I/1(t) S I/1(t 1 ) . We are now in a position to state the rules for
quantifiers as follows:

Ill. If (x)A(x) appears on the left of t and y is any variable in I/1(t),
put A(y) on the left of t.

Ilr. If (x)A(x) appears on the right of t start out a new tableau t 1 with
tSt l

• If y is the alphabetically earliest variable which has not yet occurred
in any tableau of any alternative set at this stage, put y E I/1(t 1) and put
A(y) on the right of t':

El. If (3x)A(x) appears on the left of a tableau t, and y is the alpha-
betically earliest variable which has not yet appeared in any tableau of
any alternative set at this stage, put y E I/1(t) and put A(y) of the left of t.

Et, If (3x)A(x) appears on the right of a tableau t, and y is a variable
in I/1(t), put A(y) on the right of t.

In addition to the rules we have stated, the following stipulation holds
throughout the construction: if t and t 1 are tableaux of some one alter-
native set, at any given stage, such that tSt! , and A appears on the left of
t, then put A on the left of t 1. Notice that, since the stipulation is to be
iterated an arbitrary number of times, it also applies when A is on the
left of t and tRt l

•

The relation tSt l is to hold in a construction only as required by the
rules listed above. The rules may be applied in any order, as long as the
order stipulated is such that every applicable rule is eventually applied.

A tableau t is called closed iff some formula occurs in it on both the
left and the right. A set or tree of tableaux is closed iff some tableau in
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the set is closed. A system of alternative sets is closed iff every set of the
system is closed.

A construction started out by putting A on the right of the main
tableau of the construction is called the construction for A.

We can place the following restrictions on constructions: A rule is not
to be applied to a tableau of a closed set; nor is it to be applied if it is
"superfluous" (e.g., Al is not to be applied if A and B already appear
on the left of the tableau t in question).

Let us call an alternative set at any stage of a construction terminal
iff it is not replaced at any stage of the construction by another set or
pair of sets; thus, in particular, every closed set is terminal.

In any construction, let a be some fixed sequence Y'1' Y'2' ... of
alternative sets such that Y'1 is a set at the first stage of the construction
and Y'i+ 1 is the set or one of the two sets, which, at the (i + 1)-th stage,
replaces Y'i; a terminates at Y' n iff Y'n is terminal. (If the construction
does not terminate there is at least one infinite such sequence a.) Any tab-
leau t in Y'I or in Y'i + 1 which is not an immediate descendant of any
tableau in Y'i is called an initial tableau. Let K be the set ofall sequences.
of tableaux tl' ' 2, ... such that 11 is an initialtableau andr, + I isan imme-
diate descendant of t, and r terminates at 'n iff 'n belongs to a terminal set
Y'm. Let .0 be that member of K whose first term II is in Y'1' Let tpx',
for r, t ' in K, iff for some Y'i in a there are terms t, I' of t, t' in Y'j such
that IRt' (R the ancestral of the tree ordering S). Then, intuitively,
(.0' K, p) forms a q.m.s. with domain function

'in

If a quantificational model ¢ is defined so that, for any sentence letter P,
¢(P, r) = TiffP appears on the left of some I in r, and, for any predicate
letter P", ¢( P", r) is the set of n-tuples (x l' ... , x n) of variables such that
pn(x 1 , .•• , xn) appears on the left of some I in r, then, for every formula
B, if B appears on the left of some I in r, ¢(B,.) = T (relative to the
assignment of each free variable in B to itself). Further, the dual law that,
for every B. if B appears on the right of some I in r, then ¢(B, r) = F,
holds iff z does not terminate in a closed set Y' n' Hence, if the construc-
tion was a construction for A, this is just the condition under which a
provides a countermodel for A.
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THEOREM 2: The construction for A is closed if and only if A is valid.

The proof, which follows the lines sketched intuitively above, and in
addition shows that the alternative sets of the construction for A exhaust
the possibilities of finding a countermodel for it, is omitted because it is
a routine variation on the proofs of the corresponding theorems of
[2] and [16jl).

3. Completeness theorem

3. 1. Consistency property

THEOREM 3: If A is provable in Heyting's predicate calculus, then A is
valid.

This theorem is almost trivial; we need only verify that, in a standard
formalization of Heyting's predicate calculus, the axioms are all valid,
and the rules preserve validity. Such a verification is left to the reader.

It follows that if A is provable, the construction for A is closed.

3 .2. Completeness property
We show that every valid formula A is provable by showing that if the

construction for A is closed, then A is provable. As in [2] and [16], we
do this using a notion of "characteristic formula."

As in [2], define the rank of a tableau in a finite tree of tableaux (or,
indeed, of a node in any finite tree), as follows: An endpoint of the tree
has rank O. If tis not an endpoint, let t 1, ..• , t n be its successors; then
Rank(t) = Max {Rank (ti)}+l. It is easy to verify that, for any finite
tree of tableaux, a unique rank is defined for each tableau of the tree.

1) Define A to be tree valid iff '" (A, G) = T for every model rp on a tree q.m.s,
(G, K, R). Then what really is readily proved is that the construction is closed iff A
is tree valid. But, by section 1.2 above, validity coincides with tree validity. Alter-
natively, we can argue as follows without use of section 1.2: Clearly validity implies
tree validity, and provability implies validity. The completeness result below shows
that tree validity implies provability, so the three notions coincide.

We could have defined a tableau procedure, based on a relation R, which would
have been more appropriate to models than to tree models; a reader familiar with
[21will know how this could be carried out.

Notice that, as observed in analogous cases in [21 and [161, the countermodels for
non-valid formulae obtained by Theorem 2 from tableaux are always on a countable
tree q.m.s. (G, K, R) with a countable set U of individuals involved. This "Lowenheim-
Skolem" result will be used in part II to show that the present completeness results in-
clude those of Beth [81.
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Given any tableau t in a tree of tableaux, define the following sequence
{til: to = t, t j + l = the predecessor of t j , if such a predecessor exists,
and undefined otherwise. The sequence is clearly finite, and its last term
is the origin of the tree We call it the "path from t back to the origin."
The terms of the sequence other than t "come before t" on the tree. For
any t on a tree, let X(t) be the set of all variables occurring free in t but
not in any tableau coming before it.

At any stage of a construction, the tableaux of an alternative set form a
finite tree. We define the characteristic formula of a tableau t in the set
at a given stage by induction on its rank in the set. Given a tableau t,
let AI' ... , Am[Bl , ... , Bn] be the formulae occurring on the left [right]
of t. Further, let Xl' ... , x q be the elements of X(t). (Possibly q = 0.)
If Rank (t) = 0, then the characteristic formula of t is defined as (x.). ..
(Xq) (AI A .. . Am.::::> .Bl V .. • Bn) ; or, if there are no formulae on the
left [right] of t, as (Xl)' .. (Xq) (B I V ... Bn) [(Xl)' .. (xqHA 1 A Am)]' If
Rank (t) > 0, let t l , . . . , tp be the successors of t, and let C l , , Cp be
the corresponding characteristic formulae. Then the characteristic for-
mula of t is (Xl)' .. (x q) (AI A •.. Am.::::> .B; V ... B; V C, V ... Cp) ; or,
if there are no formulae on the left [right] of t, the characteristic formula is
(Xl)" . (Xq ) (B 1 V .. . B; V Cl V " .Cp) [(Xl)" . (Xq ) (A 1 A .. •Am.::::> ,C1 V

... Cp) ] . The characteristic formula of an alternative set (tree) of tableaux
is defined as the characteristic formula of the main tableau of the set.
The characteristic formula of the entire system of alternative sets at a
given stage of a construction is defined as the conjunction of the charac-
teristic formulae of the alternative sets of the system.

In a natural sense, the present notion of characteristic formula is
"dual" to that of [2] and [16]. It may facilitate the reader's comprehension
of the notion of characteristic formula if he consults the corresponding
treatment of characteristic formulae in [2], [16].

LEMMA: If A o is the characteristic formula of the initial stage of a con-
struction, and Bo is the characteristic formula ofany stage of the construc-
tion, then I- Bo ::::> A o.

PROOF. It suffices to show that the characteristic formula of any stage
of the construction implies the characteristic formula of the preceding
stage. But the characteristic formula of the mth stage has in general the
orm D1 A .. . Dj A .. . Dn, where the Di(l :::; i :::; 11) are the characteristic
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formulae of the alternative sets of the stage. The rule which is applied and
changes the mth stage into the m + lth affects only one alternative set,
say with characteristic formula Di: If the rule is PI, Ar, or VI, it will
change this set into two distinct alternative sets, with characteristic
formulae D', and Dj; we wish to prove, then, J- D 1 A .. . D', A DjA ...
Dn . =:> •D 1 A ... D j A ... Dw To do this, it suffices to prove D', A Dj. =:> •Di:
Similarly, if the rule applied is other than PI, Ar, or VI, then D j is trans-
formed into Dj; to prove that J- D 1 A ... D', A ... Dn' =:> •V 1 A ... D j A

... Dn, it suffices to prove J- D', =:> Di: So, when a rule is applied trans-
forming the mth stage of a construction into the m + 1th, we need only
consider the characteristic formula of the set to which the rule is actually
applied.

Suppose, then, a rule (other than PI, or Ar, or VI) transforms a set Y
with characteristic formula D j into one with characteristic formula Dj;
we wish to prove J- Dj =:> Di: Let t be the tableau to which the rule is
actually applied, and let C be its characteristic formula. Further, let C'
be the characteristic formula of the tableau t' into which t is transformed
by the given rule. (The rules Nr, Pr and IIr leave t unchanged, appending
a new tableau t': In this case t' will be identical with t, but the new
characteristic formula C' of t will not be identical with the old one C.)
Suppose we can show J- C' =:> C. Then if t is the main tableau of the set
Y, we have shown J- Dj =:> Dj • Otherwise, let t 1 be the predecessor at
stage m of t, let t~ be the predecessor at stage m+ Lof r', and let Cl[C~J
be the characteristic formula oft1[ta Then C 1 is a universal quantifica-
tion (u.q.) of a formula of the form X. =:> • Yv C, and C~ is a u.q. of
X. =:> • Yv C'. Since J- C' =:> C, clearly J- (X. =:> • Yv C') =:> (X. =:> • Y V C).
Applying universal generalization to this last statement, and distributing
universal quantifiers across the implication sign, we obtain J- C~ =:> C i-

If t 1 is the main tableau of g, then C~ =:> C 1 is D', =:> D ; Otherwise, let
t2[t;J be the predecessor of tl[t~J, and apply the same reasoning as
before. Eventually we will obtain D', =:> Dj •

Thus in the case ofany rule other than PI, VI, or Ar, we need only consider
the tableau t to which the rule is actually applied, and prove the formula
C' =:> C stated above. Notice that in general C, the characteristic formula
of t, is a u.q. of a certain formula B, and C' is a u.q. of a certain formula
B'. If we prove J- B' =:> B, then by universal generalization and distribu-
tion of the quantifiers across the implication sign, we can obtain C' =:> C.
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Bearing these remarks in mind, we break down the proof into the
following cases, depending on the rule applied to obtain the m + 1th
stage from the mth. We can say a case is "justified," if we have shown,
for the case, that f- D / ::::J D j' which usually reduces to f- B' ::::J B. The
reader is advised to consult the similar treatments in [2] and [16].

In considering a rule, we will in general assume that the tableau t to
which it is applied contains formulae both on the left and the right, and
that its characteristic formula is therefore an implication. The cases
where the left or right side is empty will be left to the reader.

Case NI. The characteristic formula of t is a u.q. of X A ,A. ::::J. Y;
after A has been put on the right, its characteristic formula becomes a
u.q. of X A ,A. ::::J • Y v A. The case is justified by f- X A ,A. ::::J • Yv A: ::::J :

XA,A.::::J .Y.

Case Nr. The characteristic formula of t is a u.q. of X. ::::J • ,A v Y.
When we start out a new tableau t 1 with A on the left, and t St", the
characteristic formula of r ' is ,A (since X(t1

) is empty because any free
variable of A already occurs in t), and that of t becomes a u.q. of
X.::::J .,A v Yv ,A. The case is justified by f- X.:::::>. ,A v Yv,A::::::> :X. :::::>.

,A v Y.

Case A 1. Justified by f- X A A A B A A A B. ::::J . Y: ::::J :X A A A B. ::::J . Y.

Case Ar. Let the characteristic formula of t, call it C, be a u.q. of
X.:::::> . Yv (A A B). The rule Ar "splits" t into two alternative tableaux,
t' and t", whose characteristic formulae C' and C" are u.q.'s of X . :::::> • Y v
(A A B) v A and X.::::J . Yv (A A B) v B, respectively. Using f- (X.:::::>. Y v
(A A B) v A) A (X. ::::J . Yv (A A B) v B): ::::J: X. ::::J . Yv (A A B), and gener-
alizing, and distributing quantifiers, we obtain f- C' A C". :::::> • e. If t is
the main tableau of the set, this is the desired result f- Dj A Dj. ::::J .Dj •

Otherwise, let t 1 be the predecessor of t. The characteristic formula C1

of t 1 is a u.q. of Xl' ::::J. Y1 V C; it is transformed by Ar into two alter-
native characteristic formulae C~ and e~, which are u.q.'s, respectively,
of Xl' ::::J . Y1 V C' and Xl' ::::J . Y1 V C", Using f- C' A C", ::::J • C, we easily
obtain f- C~ A e~. ::::J .C 1 . Continuing this process along the path from t
back to the origin, in a finite number of steps we obtain f- Dj A Dj. ::::J .Di:

Case PI. Like Ar, using f- (X A (A ::::J B). ::::J . Y v A) A (X A (A ::::J B) A

B.:::::>. y)::::::>:XA (A :::::> B).:::::>. Y.
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Case Pro Let the characteristic formula of t be a u.q. of X. ::::> • Y v
(A ::::> B). Pr instructs us to start out a tableau t 1

, with A on the left and
B on the right, whose characteristic formula is thus A ::::> B (X(t1) being
empty). Then the characteristic formula of t is transformed into a u.q.
of X.::::>. Yv (A ::::> B)v (A::::> B), and I- X.::::>. Yv(A ::::> B) v (A::::> B):::::>:
X. ::::> • Yv (A ::::> B) justifies the case.

Case VI. Like Ar, using I- (X A (A v B) A A. ::::> • Y) A (X A (A v B) A

B.::::>. Y):::::> :(X A (A v B).::::>. Y).

Case Vr. Justified by I- X.::::>. Yv (A v B)v A vB:::::> :X.::::>. Yv (A v B).

Case 171. If t has as characteristic formula C, a u.q. of X A (3x)A(x). ::::> •

Y, after application of 171, t is transformed into t 1 , whose characteristic
formula C' is a u.q. of X A (3x)A(x) A A(a). ::::> • Y. Since a is a new
variable not previously introduced, a E X(t1 ) . Thus, we can take C' to
be a U.q. of (a) (X A (3x)A(x) A A(a). ::::> • Y). So I- (a) (X A (3x)A (x) A A(a).
::::> • Y):::::> :X A (3x)A(x). ::::> • Y justifies the case-

Case 17r. Justified by I- X.::::>. Y v (3x)A(x) A A(a):::::> :X.::::>. Y v
(3x)A (x).

Case III. Justified by I- X A (x)A(x) A A(a). ::::> • Y: ::::> :XA (x)A(x). ::::> • Y.

Case IIr. The characteristic formula of t is a u.q. of X. ::::> • Y v (x)A(x).
IIr instructs us to start out a new tableau t\ with tSt\ and with A(a)
on the right, where a has not previously been used. Then X(t1) = {a},
since a is the only free variable of t 1 which does not occur in t, Hence the
characteristic formula of t 1 is (a)A(a), and the characteristic formula
of t is transformed into a u.q. of X.::::>. Yv (x)A(x) v (a)A(a). So
I- X. ::::> • Y v (x)A(x) v (a)A(a): ::::> :X. ::::> • Y v (x)A(x) justifies the case.

Finally, we must justify the rule stipulating that if a formula A appears
on the left of a tableau t, and tSt", we must put A on the left of t 1 • This
is justified by XAA.::::>.Yv«X' AA)::::> Y'):::::>:XAA.::::>.Yv (X' ::::>

Y'). The lemma is proved.

THEOREM 4: If A is valid, then A is provable in Heyting's predicate
calculus.

PROOF. We can assume A has no free variables. Since A is valid, the
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construction for A is closed. Then there is a stage at which each alterna-
tive set is closed; let the characteristic formula of that stage be D 1 /\ • • • D.,
where the D /s are the characteristic formulae of the alternative sets of
the stage. By the lemma, D 1 A ..• D n • =:l.A (since A is the characteristic
formula of the initial stage). So it suffices to show D j for each j. The
alternative set whose characteristic formula is D j' being closed, contains
a closed tableau t. Then t contains a formula B on both sides, so its
characteristic formula C is a u.q. of X /\ B. =:l • Y v B. Clearly I- C. If t
is the main tableau of the set, this is D i: Otherwise, let t 1 be the prede-
cessor of t. Then the characteristic formula C1 of t 1 is a u.q. of X'. =:l •

Y' V C. Clearly I- C1 • Continuing in this manner, we are driven back along
the path from t to the origin until we obtain I- D I: Q.E.D.

REMARK. The theorem gives a finitary proof that if the construction
for A is closed, I- A. We could have proved it alternatively by showing
that the tableau procedure is equivalent to a standard Gentzen formula-
tion of Heyting's system. Of course the theorem and proof apply to the
propositional calculus, even though the proof was carried out for the
predicate calculus.
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