Intuitionistic Sentential Calculus

Intuitionism is a revolutionary program for rebuilding the foundations of mathematics.
Initiated by L.E.J Brouwer,' its central idea is that mathematics is a creation of the human mind.
Since mathematical entities don’t have any kind of autonomous existence, they don’t have any
properties beyond the properties we build into them by our theorizing. There isn’t anything to
being a real number beyond having the properties with which we mentally endow the real
numbers in our theorizing. If there is a question we can’t answer, that we are unable to answer no
matter how assiduously we attempt to answer it, then the question doesn’t have an answer, for
there is no objective mathematical reality to supply answers we can’t provide.

Is there an n such that there is no sequence of exactly n 7s in the decimal expansion of ©t?
Nobody knows, and there is no reason to expect that anyone ever will or can know. Can we at
least say this much: Either there is an n such that there is a sequence of exactly n 7s in the
decimal expansion of & or, for every n, there is a sequence of exactly n 7s in the decimal
expansion of . Classical mathematics says that of course we can, since the law of the excluded
middle, which permits us to assert sentences of the form (¢ V ~ @), is a law of logic. Intuitionists
say that, if the issue is indeed undecidable (it could happen that there’s a proof we don’t know
about) then the disjunction isn’t true because neither disjunct is true.

Truth, as intuitionists conceive it, has a lot in common with truth in a work of fiction, but
there’s a crucial difference. The author of Beowolf doesn’t tell us the color of King Hrothgar’s
eyes, and since Hrothgar is a fictional character, he doesn’t have any attributes beyond those
given to him by the poet. So within the fictional world of Beowolf, the statement that Hrothgar
had blue eyes in neither true of false. Nevertheless, we can say this much: Within the story,
either Hrothgar had blue eyes or he didn’t have blue eyes. According to intuitionists,
mathematical statements have a tacit “within mathematics” in the same way that statements like
“Beowolf tore off Grendel’s arm” need to be understood as really saying, “within the Beowolf
story, Beowolf tore off Grendel’s arm.” Here’s the key difference: Within the Beowolf story,
either Hrothgar’s eyes were blue or they were not. According to intuitionists, we cannot say:
Within mathematics, either there is an n for which there is no sequence of exactly n 7s in m or
there is no such n. We can’t say that because saying it would blur the boundary between
mathematics and fiction. Mathematics may be about a subject that is a human creation, but its
theorems are objectively true.

Intuitionists have their own logic, which is more restrictive than classical logic. Here is
an example, due to Dummett,” of reason that is legitimate classically but not intuitionistically:

Theorem. There are irrational numbers b and ¢ such that b is rational.

'“On the Significance of the Principle of Excluded Middle” in Jean van Heijenoort, ed.,
From Frege to Gédel (Harvard University Press, 1967), pp. 334-345.

*Elements of Intuitionism 2nd ed. (Oxford University Press, 2000), p. 6.
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Proof: There are two cases:

Case 1. V2 "?is rational. Setb=c = V2.

Case 2. v2"? is irrational. Set b =+v2"? and ¢ = v2. Then b° = (v2'?)"? = v2? = 2, which is
rational. X

To classical mathematicians, this is a perfectly good proof, but intuitionists will reject it. Since
we have no method of testing whether v2*? is rational, we have no assurance that either case
obtains.

Intuitionistic thinking has been extended beyond mathematics by tying the doctrine to
verificationism. Sentences don’t have an intrinsic meaning. Somehow, they are given their
meanings by us, the speakers. How? Verificationists say that the meaning of a sentence is fixed
by our procedures for testing whether the sentence obtains. If we are unable, even if we have
unbounded time and resources, to determine whether a sentence is true, then the sentence in
neither true nor false, and intuitionistic logic should apply.’

Rules of Intuitionistic Sentential Calculus

Arend Heyting* gave a system of intuitionistically sound rules for the sentential calculus.
The main difference between Heyting’s rules and the classical rules is the absence of the law of
the excluded middle. Heyting extended that system to include the intuitionistic predicate
calculus, but we won’t follow him there. The distinctive feature of the intuitionistic predicate
calculus is its rejection of nonconstructive existence proofs, that is, proof that purport to
establish the existence of a mathematical entity satisfying a particular description without being
able to identify the entity. Thus intuitionists will reject our classical proof that there exist
irrational numbers b and ¢ such that b® is rational. We identified two candidates, but didn’t single
one out.

The system we’ll look at here isn’t Heyting’s system but a system of “natural deduction,”
which aims to stick as closely as possible to the ways good reasoners reason informally. We’ll
follow Gerhard Gentzen,’ though not in exact detail.

Intuitionists identify truth with idealized provability. A conjunction is intuitionistically
true iff it’s provable, which happens iff both conjuncts are provable, which happens iff both
conjuncts are true.

*See Michael Dummett, “Truth” in Truth and Other Enigmas (Harvard University Press,
1978), pp. 1-24.

*Intuitionism: An Introduction, 2nd revised ed. (North-Holland, 1966), pp. 97-101.

>“The Calculus of Natural Deduction” in “Investigations into Logical Deduction” in M.
E. Szabo, ed., The Collected Papers of Gerhard Gentzen (North-Holland, 1969), pp. 74-80.
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A disjunction is true intuitionistically iff one both disjuncts are true intuitionistically,
which happens iff one or both disjuncts are provable. So instances of excluded middle aren’t
necessarily intuitionistically true.

To say that a conditional is true intuitionistically means that there is a partial proof
which, if tacked onto a proof of the antecedent, would yield a proof the the consequent.

To say that a negation is true means that a contradiction can be derived from the
negatum.
Classically, we could treat “~" as defined: (¢ - ) =p.; (~ @ V y). If you had a proof
either of ~ @ or y, you could combine it with a proof of ¢, if you had one, to get a proof of y. So
(~ ¢ V ) intuitionistically implies (¢ ~ y). But having a partial proof that you could tack onto a
hypothetical proof of ¢ to get a proof of y doesn’t provide us either with a refutation of @ or a
proof of y. So the equivalence ((¢ - ) < (~ @ V y)) is intuitionistically invalid.

2 ¢¢ 2
~

The logical terms of the intuitionistic formal language will be “V/,” “/\,” “~, ,” and

“1.”“1”1s a special atomic sentence that’s always false.

|—Int is the smallest relation relating sets of sentences to sentences that meets the following
conditions:

Identity IfyeTl, thenT |—lnt Y.

Transitivity Ifr |‘1m 0 for each member d of A and A |‘1m @, then T’ |—Int 0.
“N’-introduction (@} Fu (@ A ).

“N"-elimination (@AW} hw@and {(@ A )} Fy v

“\”-introduction {@} b (@ V y), and {y} b, (@ V).

Proof by cases T u {¢p} }—Im Band ' U {y} }—Im 0,then ' U {(@ V v)} |‘1m 0.
Modus ponens (0@~} v

Conditional proof  IfT" U {@} Hm v, I hm (@~ ).

Ex contradictione quodlibet {1} |—lnt A, any x.
Law of contradiction {@, ~@} |—Im 1.
Intuitionistic reductio If " U {@} }-Im 1, T |—Int ~ Q.

Ifr |—lnt @, then there is a finite subset [, of " such that I'y;, |—Int ¢. Transitivity, proof by
cases, conditional proof, and intuitionistic reductio are indirect rules. The others are direct
rules.If Q |—Int @, then there is a finite Qg of Q for which we can obtain Q,, |—Int ¢ at the end of a
finite sequence, each member of which is either an application of a direct rule or obtained from
earlier members of the sequence by an indirect rules, and where each set that occurs to the left of
“ |—Im” is finite. In this situation, we’ll say that ¢ is “intuitionistically derivable” from Q.
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Intuitionistic Kripke Models

Kripke invented a way of applying possible-world semantics to the study of intuitionistic
logic. A “possible world” is an possible epistemic state, a way that, as far as we can tell at a
particular time, the mathematical situation might be. If we’re in epistemic state w, we can’t go
beyond w by logic alone, but we might be able to employ some mathematical proof or
mathematical insight to reach a new epistemic state v that goes beyond w. We’ll say that v is
accessible from w. We are talking about the epistemic states of idealized agents, who always
reason rigorously, and who are fully confident in the rigor of their reasoning. So if v is accessible
from w, anything that you know in w will still be known by you in v.

An intuitionistic model is an transitive, reflexive model <W,R,I,@> that obeys the
condition that, if I(a,w) = T and wRv, I(a,v) = T. We’re using our old notation, but there’s a
danger. We say that, from an intuitionistic point of view, an undecidable statement is neither true
nor false because it’s neither provable nor refutable, but when we write “I(a,w) = F,” we don’t
mean that o can be refuted but that it hasn’t been proved. We should think of “I(a,w) = T and
“I(a,w) = F as “a can be proved in w” and “a can’t be proved in w,” leaving truth and falsity
out of it.

We define what it is for a sentence to be intuitionistically true in an intuitionistic model.
An atomic sentence a is intuitionistically true in <W,R,L,w> iff I(a,w) =T.

A conjunction is intuitionistically true in <W,R,I,w> iff both conjuncts are intuitionistically true
in <W,R,I,w>

A disjunction is intuitionistically true in <W,R,I,w> iff one or both disjuncts are intuitionistically
true in <W,R,LLw>.

A conditional (¢ - ) is intuitionistically true in <W,R,I,w> iff the y is intuitionistically true in
every model <W,R,I,v> in which wRv and ¢ is intuitionistically true.

1 isn’t intuitionistically true in <W,R,I,w>.

A negation ~ @ is intuitionistically true in <W,R,I,w> iff there is no world v with wRv such that
@ is true in <W,R,I,v>.

The rules were carefully designed to ensure that we have the following property, which
we prove by an easy induction on the complexity of 6:

Monotony. If 0 is intuitionistically true in <W,R,I,w> and wRv, then 0 is
intuitionistically true in <W,R,[,v>.



Intuitionistic Sentential Calculus, p. 5

Soundness and Completeness

It’s straightforward to verify, by examining the rules one by one, that if I’ |‘1m %, then y is
intuitionistically true in every intuitionistic model in which all the members of I are
intuitionistically true. We want to show the converse, that if I' S\Im ¥, then there is an
intuitionistic model in which all the members of I are intuitionistically true but y isn’t
intuitionistically true.

Our proof will imitate the completeness proofs we had earlier, but it won’t duplicate it.
Before we took our worlds to be complete stories, but now we don’t want our worlds to be
complete. We’ll want them to leave some questions unsettled.

The canonical frame for intuitionistic logic is the triple <W,R,I> where:

W = {sets of formulas w with the property that, for some formula {, w A, , but
for any set s of formulas that properly includes w, s |—Int C.

wRv iff w c v.
I[(a,w)=Tiffa e w.
The center of the proof is the following:

Truth Lemma. A formula is intuitionistically true in a world in the
canonical frame iff it’s an element of the world.

Proof: By induction on the complexity of formulas.

Case 1. For an atomic formula a, a is intuitionistically true in w iff I(a,w) = T, which happens iff
oeEw.

Case 2. We know from transitivity that any formula derivable from a world in an element of the
world. It follows that, for given ¢ and v, (¢ /A y) is an element of a world w iff ¢ and y are both
elements of w. (¢ A y) is intuitionistically true in w iff ¢ and y are both intuitionistically true in
w iff @ and y are both elements of w (by inductive hypothesis) iff (¢ A\ y) is an element of w.

Case 3. If a disjunction (¢ V ) is intuitionistically true in w, either @ or v is intuitionistically
true in w. So either @ or y is an element of w, by inductive hypothesis. So (¢ V ) is an element
of w.

If (¢ V y) isn’t intuitionistically true in w, neither ¢ nor v is intuitionistically true in w.
By inductive hypothesis, neither ¢ nor y in an element of w. There is a formula  such that
isn’t derivable from w but ( is derivable from any set of formulas that properly includes w. So
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is derivable from w U {¢} and also derivable from w u {y}. It follows by proof by cases that { is
derivable from w U {(@ VV y)}. So (¢ V y) isn’t in w.

Case4.If (¢ - y)isn’tinw, w }\ (¢ - y). By conditional proof, w U {¢} &w. Take v to be a
maximal set of formulas containing w u {¢@} from which y isn’t derivable. v is a world
accessible from w containing ¢ and not containing y. By inductive hypothesis, ¢ is
intuitionistically true in v and v isn’t intuitionistically true in v. So (¢ ~ ) isn’t
intuitionistically true in w.

If (¢ ~ y) is in w, it’s in any world accessible from w. If v is a world accessible from w
in which ¢ is intuitionistically true, the inductive hypothesis tells us that ¢ is in v as well as (¢ -
). By modus ponens, v is in v, so by inductive hypothesis, y is intuitionistically true in v. It
follows that (¢ - y) is intuitionistically true in w.

Case 5. For any world w, there is a sentence ( that isn’t derivable from w. This implies, because

of ex contradictione quodlibet, that | can’t be in w. Moreover, _L isn’t intuitionistically true in
w.

Case 6. If ~ ¢ is intuitionistcally true in w, then there isn’t any world accessible from w in which
@ is intutionistically true. So, by inductive hypothesis, there isn’t any world that contains both w

and @. If L weren’t derivable from w U {@}, we could find a maximal set including w U {¢}

from which _L isn’t derivable, thereby finding a world containing w U {@}. So _L is derivable
from w U {¢}. By intuitionistic reductio, ~ ¢ is derivable from w, so ~ @ is an element of w.

If ~ @ is in w, then any world accessible from w in which ¢ is intuitionistically true
would be, by inductive hypothesis, a world that contains both ¢ and ~ ¢, and so, according to the

law of contradiction, it would contain _L. But that can’t happen, by case 5. So there is no world
accessible from w in which ¢ is intutionistically true. Hence ~ ¢ is intuitionistically true in w. X

Now that we have the truth lemma, the completeness theorem is easy. If y isn’t derivable
from I', we can find a maximal set w containing I" from which y isn’t derivable. w is a world in
which, according the the truth lemma, all the members of I" are intuitionistically true and ¥ is
not.X

Now that we have the completenenss theorem, we can show that sentences aren’t
derivable by finding intuitionist models in which they aren’t true. For example, take a model
with two worlds @ and w with R= {<@,@>, <@,w>, <w,w>}. Let “P” be true in w only. Then
neither “P” nor “~ P” is intuitionistically true in @. So “(P VV ~ P)” isn’t intuitionistically true in

@.

Double negation introduction — the rule that lets us derive ~ ~¢ from {@} — is derivable,

but double negation elimination is not. From {¢,~ ¢} you can derive _L by the law of
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contradiction. By intuitionist reductio, you can derive ~ ~ ¢ from {¢}. On the other hand, if we
have two worlds @ and w with R = {<@,@>,<@,w>,<w,w>} and we have “P” true in w only,
“~P” won’t be true in either world, so “~ ~ P” will be true in@, even though “P” is not.

De Morgan’s law tells us the (~ ¢ \V ~y) is equivalent to ~ (¢ N y). The left-to-right
direction is valid. If there is no world accessible from @ in which ¢ is intuitionistically true,
there is no world accessible from @ in which (¢ A ) is intuitionistically true. If there is no
world accessible from (@ in which v is intuitionistically true, there is no world accessible from
@ in which (¢ A v) is intuitionistically true. So if (~ ¢ \V ~ y) is intuitionistically true in @,
either
~ (p 1s intuitionistically true in @, in which case ~ (¢ A ) is intuitionistically true in @, or ~ y is
intuitionistically true in @, in which case again ~ (¢ /\ y) is true in @.

The right-to-left direction of de Morgan’s law isn’t intuitionistically valid. Take a model
with three worlds, @, w, and v, with R = {<@,@>,<@,w>,<@,v>,<w,w>,<v,v>} and with “P”
true in w only and “Q” true in v only. “~P” isn’t intuitionistically true in @ and “~Q” isn’t
intuitionistically true in @, so “(~ P V ~ Q)” isn’t intuitionistically true in @, even though “~ (P
A Q)” is intuitionistically true in @.

One form of contraposition tells us that, if from I' U {¢} you can derive y, then from I" U
{~ v} you can derive ~ @. This form is intuitionistically valid. Suppose all the members of I U
{~ v} are intuitionistically true in w. Take v accessible from w. Since all the members of I are
intuitionistically true in v and y isn’t intuitionistically true in v, ¢ must not be intuitionistically
true in v. This holds for any world v accessible from w, so ~ @ is intuitionistically true in w.

The other form of contrapositions tells us that, if from I U {~ y} you can derive ~ @, then
from I" U {¢} you can derive y. This form isn’t intuitionistially valid. From {~ P} you can derive
~ ~ ~ P by double negation introduction, but you can’t derive P from {~ ~ P}.

The rule we have is intuitionistic reductio. Classical reductio tell us that, if you can

derive L fromI" U {~ ¢}, then from I" you can derive ¢. This isn’t intuitionisticaly valid. From

{~~P,~P} you can derive L, but from {~ ~ P} you can’t derive P.

Classical Natural Deduction
We can get a sound and complete system of natural deduction for classical logic by
adding the double negation elimination to the intuitionistic rules. Let |>Class be the smallest

relation that includes the intuitionistic rules and also the following:

Double negation elimination {~~ 0} s @-
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It’s clear by examining the rules, including DNE, that ifI" |—Class %> then every complete storythat
contains I" contains . We want to show that converse, that if ' p., %, then there is a complete story that
includes I" but not y.

We begin by getting the following derived rule for |‘c1ass3

EXhauStion Ifr Y {(p} |_Class X and F u {N ('p} |_Class X’ then r |_Class X

IfT U {@} Fepss % then T U {@,~ %} e L, by the law of contradiction and transitivity. By intuitionistic

reduCtioa r U {N X} |‘Class ~ (p Ifr N {N (p} |‘Class Xa F N {N X} FClass X7 and hence F U {N X} FClass J— By
intuitionistic reductio, I |—Class ~~y By DNE, I' |—Class e

If we carry out the canonical frame construction using |—Class instead of |—Im, the exhaustion rule
assures us that every world in a complete story. If w is a world, there is a sentence { such that w is a
maximal set from which ( is not derivable. Take any sentence y. If neither y nor ~ y is in w, then { is
derivable from w u {y} and also derivable form w u {~ y}. Exhaustion tells us that { is derivable from w,
which is impossible.

If y isn’t classically derivable from I, then there is a world in the canonical frame that contains all
the members of I" and excludes y. That world is a complete story.

Intuitionistic Logic and S4

In 1933, Godel® gave a method for translating an intuitionistic language into a classically
interpreted modal language. He defined a translation Tr with the property that a sentence y is an
intuitioinist consequence of a set of sentences I' if and only if Tr(y) is an S4-consequence of the images
under Tr of I':

Tr(a) = Ca, for o atomic.
Tr(e V y) =L(Tr(e) V Tr(y)).
Tr(o /A y) =L(Tr(e) A Tr(y)).
Tr( = y) =L(Tr(e) ~ Tr(y)).
Tr(Ll)=01L.

Tr(~ @) = U~ Tr(e).

Theorem.” T’ hm y iff Tr(y) is an S4-consequence of {Tr(y): y € I'}.

Proof: (<) Given an intuitionistic frame <W,R,I>, we have the following:

%<An Interpretation of the Intuitionistic Propositional Calculus,” Collected Works, vol. 1
(Oxford University Press, 1986), pp 290-301.

'Gédel proved the left-to-right direction and conjectured the right-to-left, which was
proved by J. C. C. Mckinsey and Alfred Tarski, “The Algebra of Topology,” Annals of
Mathematics 45 (1944): 141-191.
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Lemma. A formula 0 is intuitionistically true in <W,R,I,w> iff Tr(0) is classically true in
<W,R,I,w>.

Proof: By induction on the complexity of 6. I’ll only go through one case here, the case where 0 is a
disjunction (¢ V y). We have:

(o V v) is intuitionistically true in w
iff either ¢ or v is intuitionistically true in w
iff either Tr(¢) or Tr(y) is classically true in w [by inductive hypothesis]
iff (Tr(g) V Tr(y)) is classically true in w
*) iff (Tr() V Tr(y)) is classically true in w
iff Tr(p V y) is classically true in w.

We get (*) by noting that Tr(¢) and Tr(y) both begin with “[’s, say ¢ = [y and y = [v, and observing
that the following is a theorem of S4:

(Ow V Ov) = OO V Ov)).&

If F}\Im ¥, there is an intuitionistic model <W,R,L,@> in which all the members of I are
intuitionistically true and y is intuitionistically false. <W,R,I,@> is an transitive, reflexive model in which
all the members of {Tr(y): y € I'} are classically true and Tr(y) is classically false.

(=). Given an S4-model <W,R,I,@> define an intuitionistic interpretation <W,R,I*,@> by stipulating
that I*(a,w) = T iff I(a,v) = T for all v with wRv. We have the following, by induction on the complexity
of 6:

Lemma. 0 is intuitionistically true in <W,R,I* w> iff Tr(0) is classically true in <W,R,L,w>.
If Tr(y) isn’t an S4-consequence of {Tr(y): y € I'}, there is a transitive, reflexive model
<W,R,L,@> in which all the members of {Tr(y): y € I'} are classically true and Tr(y) is classically false. In

<W,R,I*,@>, all the members of I are intuitionistically true and y is intuitionistically false.®

Since there is an algorithm for testing whether an inference with finitely many premises is
modally valid in S4, we have this:

Corollary. There is an algorithm for testing whether an inferene with finitely many
premises is intuitionistically valid.



