
lapse of time can exist without an objective lapse of time,
no reason can be given why an objective lapse of time
should be assumed at all” (p. 206; see Yourgrau 1999).

Here, then, is another example of the Janus-faced
quality of Gödel’s thinking, presaged already in his arith-
metization of metamathematics—contributing mathe-
matically to “the left” while at the same time, as he sees it,
pointing to “the right.”

See also Gödel’s Incompleteness Theorems; Logic, His-
tory of; Mathematics, Foundations of.
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gödel’s incompleteness
theorems

The axiomatic method is at the heart of mathematics.
The work of mathematicians is to derive the conse-
quences of axioms. According to Euclid, axioms are evi-
dently true, and deduction from them is a powerful
method of learning new truths. The rise of non-Euclid-
ean geometry disrupted the carefree connection between
truth and proof and led many modern thinkers to adopt
the formalistic attitude that the mathematician’s sole
endeavor is to work out the consequences of axioms, tak-
ing no professional interest in inquiring what, if any-
thing, the axioms are true of.

In 1931 Kurt Gödel proved a deep theorem that
showed that deduction from axioms cannot be all there is
to mathematical understanding. Gödel showed that, for
whatever system of truths of number theory we choose to
regard as axiomatic, there will be statements of basic
arithmetic that we can recognize as true even though they
are not consequences of the axioms. That there are truths
not derivable from our axioms is hardly surprising;
nobody ever promised us omniscience. What is surpris-
ing is that there are arithmetical statements we can recog-
nize as true even though they are not derivable, so that no
system of axioms we can write down fully captures our
arithmetical understanding. Moreover this situation
holds not only for systems of axioms we are capable of
producing today but also for whatever systems we may
devise in the future.
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Gödel’s true, unprovable sentence is obtained by
using strings of numbers to encode strings of symbols,
thereby reducing statements about language to statements
about numbers. Under such a coding Gödel’s sentence
says that the system of axioms is consistent. Of course if
we accept the axioms, we regard the axioms as true, so we
certainly regard them as consistent. But even though
adopting the axioms means accepting their consistency,
the statement that the axioms are consistent cannot be
proved from the axioms. We could adopt the thesis that
the axioms are consistent as a new axiom. This would give
us a new, larger system of axioms that can prove the con-
sistency of the old system but not the consistency of the
new system. We can continue the process of adding con-
sistency statements repeatedly, but however far we go we
shall never catch up with Gödel. No consistent system that
includes basic arithmetic can prove its own consistency.

Gödel’s result has important corollaries, notably,
Church’s theorem (1936) that there is no algorithm for
testing whether a sentence is logically valid and Tarski’s
theorem (1935) that the set of true sentences of a lan-
guage cannot be defined within the language itself.

the language of arithmetic

Gödel’s results apply to the language of arithmetic, which
is an artificial language for formalizing reasoning about
the natural numbers, and to other languages into which
the language of arithmetic can be translated. To state his
results we need to specify the language exactly. As numer-
als, the language uses “0” and expressions obtained from
“0” by repeatedly prefixing “S,” which stands for the suc-
cessor function. The numeral for 3 is “SSS0,” which we
abbreviate “3.” The language also contains function signs
“+” “¥” and “E,” for addition, multiplication, and expo-
nentiation, so that the terms of the language make up the
smallest class that contains the numeral “0” and the vari-
ables v0, v1, v2, v3, …, and that contains St, (t+r), (t¥r),
and (tEr) whenever it contains t and r. In the exposition
here we shall sometimes use other letters as variables in
place of the official vis, so as to reduce the proliferation of
subscripts. Including “E” as a primitive operation is not
strictly necessary, as we shall see below, but it enables us
to get off to a fast start.

A term without variables is closed. Rules that we
learned in elementary school enable us to calculate the
numerical value of each closed term. A term with n vari-
ables represents an n-ary function, calculable by a grade-
school algorithm.

The atomic formulas take the form t = r or t ≤ r,
where t and r are terms, and the formulas constitute the

smallest class containing the atomic formulas and con-
taining ~ f, (f ⁄ y), and ($vi)f, whenever it contains f
and y. An occurrence within a formula of the variable vi

is bound if it occurs within some subformula that begins
with ($vi), and it is free otherwise. A formula without free
variables is a sentence; it is sentences that are either true or
false. The symbols for conjunction (“Ÿ”), the conditional
(“Æ”), the biconditional (“}”), universal quantification
(“("vi)”), and the less-than relation (“<”) are treated as
defined.

Where vi does not occur within the term t, we use
($vi≤t)f and ("vi≤t)f to abbreviate ($vi)(vi≤t Ÿ f) and
("vi)(vi≤t r f).These are bounded quantifiers, and a for-
mula with no quantifiers that are not bounded is a
bounded formula. For example ‘v0 is prime’ is formalized
by the bounded formula ‘(SS0≤v0 Ÿ ("v1≤v0)("v2≤v0)(v0

= (v1 ¥ v2) r (v1 = S0 ⁄ v2 = S0)))’. A set or relation is said
to be bounded if it is the extension of a bounded formula.

We can test whether an atomic sentence is true by
grade-school algorithms; “true,” that is, in the standard
model consisting of the natural numbers 0,1,2,3, … Any
bounded sentence is demonstrably equivalent to a truth-
functional combination of atomic sentences, since
bounded quantifiers can be cashed out as long but finite
disjunctions and conjunctions. Thus we have an algo-
rithm for determining the truth value of a bounded sen-
tence. It follows that every bounded set or relation is
decidable; that is, there is an algorithm for testing mem-
bership in the set or relation. If S is the extension of the
bounded formula s(x0), we can test whether n � S by ask-
ing whether s(n) is true.

The S formulas are obtained by prefixing a block of
existential quantifiers to a bounded formula, and their
extensions are recursively enumerable sets and relations.
Any recursively enumerable set is the extension of a for-
mula obtained by prefixing a single existential quantifier
to a bounded formula, since ($x1)($x2)…($xn)f is equiva-
lent to ($x0)($x1≤x0)($x1≤x0)…($xn≤x0)f. (The same goes
for recursively enumerable relations; in the future we shall
let this go without comment.) The union and intersection
of recursively enumerable sets are recursively enumer-
able, since (($y)f(x,y) ⁄ ($z)y(x,z)) and (($y)f(x,y) Ÿ
($z)y(x,z)) are, respectively, logically equivalent to
($y)($z)(f(x,y) ⁄ (y(x,z)) and ($y)($z)(f(x,y) Ÿ (y(x,z))
(assuming bound variables have been chosen so as to
avoid conflicts). If c(x,y,z) is bounded and t is a term, {x:
($y≤t)($z)c(x,y,z)} and {x:("y£t)($z)c(x,y,z)} are both
recursively enumerable since they are the extensions of
($z)($y≤t)c(x,y,z) and ($w)("y≤t)($z≤w)c(x,y,z), re-
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spectively. If a S sentence is true, we can show it is true by
providing an appropriate witness.

S formulas and decidability

A set of numbers is effectively enumerable if there is a
mechanical procedure for listing the set, so that every
member of the set turns up on the list eventually and
nothing appears on the list that is not in the set. Every
recursively enumerable set is effectively enumerable. To
see this, we introduce the pairing function. Pair(x,y) =
1⁄2(x2 + 2xy + y2 + 3x + y) is a one-one correspondence
between ˘ ¥ ˘ and ˘ (where ˘ is the set of natural num-
bers). Define the functions 1st and 2nd so that
Pair(1st(z),2nd(z)) = z. Given a recursively enumerable
function S = {x0: ($x1)s(x0,x1)}, with s bounded, we can
list S by the following algorithm: At stage n, test whether
the sentence s(1st(n), 2nd(n)) is true; if it is, add 1st(n)
to the list.

Every set that is known to be effectively enumerable is
recursively enumerable. This striking fact, together with a
large body of evidence obtained by examining idealized
models of computation and examining structural proper-
ties of effectively enumerable and recursively enumerable
sets, has led to the general acceptance of the Church-Tur-
ing thesis: A set of natural numbers is effectively enumer-
able if and only if it is recursively enumerable.

A set of natural numbers is decidable if and only if
there is an algorithm for testing membership in the set. A
set can be effectively enumerable without being decid-
able, since, if we have a procedure for listing an infinite
set, there will be no stage at which, from the fact that a
given number has not yet turned up on the list, we can
conclude that the number will never appear on the list.
On the other hand if a set and its complement are both
effectively enumerable then the set is decidable, and con-
versely. Defining a set to be recursive if it and its comple-
ment are both recursively enumerable, the Church-
Turing thesis tells us that a set is decidable if and only if it
is recursive.

An unary partial function is a set of ordered pairs ƒ
with the property that, whenever <i,j> and <i,k> are both
in ƒ, we have j = k. If <i,j> � ƒ, for some j, we say that i is
in the domain of ƒ, and we write ƒ(i) = j. (Partial functions
of more than one variable are defined similarly.) ƒ is said
to be calculable if there is an algorithm that, for given
input i, gives the output ƒ(i) if i is in the domain of ƒ, and
yields no output at all if i is outside the domain of ƒ. A
unary partial function is calculable if and only if, qua
binary relation, it is effectively enumerable. It follows
according to the Church-Turing thesis that ƒ is calculable

if and only if it is recursively enumerable. If so, ƒ is said to
be a partial recursive function. (The notation is confus-
ing—a collection of ordered pairs can be a partial recur-
sive function without being a recursive relation—but
entrenched.) A total recursive function—a partial recursive
function whose domain is all of ˘—will be a recursive
relation, since if ƒ is {<i,j>: ($x)q(i,j,x)}, with q bounded,
the complement of ƒ is {<i,j>:($x)($y)(~ y = jŸ q(i,y,x))}.

arithmetization of
metamathematics

The set-theoretic paradoxes, particularly Russell’s para-
dox, had on David Hilbert much the same effect that
Zeno’s paradoxes had on Aristotle. Both thinkers came to
realize that the idea of the infinite held great intellectual
peril with the risk of contradiction at every turn. Unlike
Aristotle, however, Hilbert was unwilling to banish the
actual infinite from mathematical reasoning. Instead he
proposed to develop the theory of infinite sets in such a
way that we could be assured that no contradiction would
ensue, by treating mathematical proofs as the objects of
mathematical study, in the same way that earlier mathe-
maticians had treated curves, planes, and numbers as
objects of mathematical study. A mathematical proof is,
after all, a finite object, even if the sentences that appear
in the proof talk about infinite objects, and Hilbert pro-
posed that a new science of metamathematics could show
by finite means that set theory was free of contradiction,
by showing that there is no finite path that leads from the
axioms to “~ 0=0.”

The great breakthrough in metamathematics was
Gödel’s proof, which showed that it was not necessary to
go outside set theory or even outside arithmetic to carry
out metamathematical investigations. By assigning
numerical codes to formulas and finite strings of formu-
las, and by reducing properties of proofs to properties of
their code numbers, it was possible to develop proof the-
ory as a branch of number theory. This technique led to a
great flowering of metamathematics even though as we
shall see, it derailed Hilbert’s plan.

The arithmetization of metamathematics proceeded
in two stages. In the first stage numerical codes are
assigned to simple symbols more-or-less arbitrarily, so
that a formula, which is a string of simple symbols, can be
coded as a sequence of numbers. Second we devise a
method for encoding a finite sequence of numbers as a
single number. This enables us to encode a formula as a
single number. In this way a proof, which is a sequence of
formulas, is encoded as a sequence of numbers, which is,
in turn, coded as a single number.
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We attack the second stage first. We already know
how to use the function Pair to code a pair of natural
numbers by a single number. We can encode a finite set of
natural numbers by a single number by setting the code
number of the finite set F, Code(F), equal to 

i
S
�F

(2Ei)
Code provides a one-one correspondence between the set
of finite sets of natural numbers and ˘. The number n is
the image under Code of the set of places in the binary
decimal expansion of n in which “1”s appear. Finally, we
encode the finite sequence <k0,k1, … ,km> as the number
Code({Pair(0,k0), Pair(1,k1), … , Pair(m,km)}). Here we
shall use an expression like “<3,2,1>” ambiguously to
denote a sequence of length three and to denote the code
number for that sequence, which is 448.

The relation that holds between k and n if k is an ele-
ment of the set coded by n is defined by a bounded for-
mula; abusing notation, we write “k � n” to represent the
statement that ($i < (2Ek))($j < n)n = (i + ((2 E k) + (j ¥
(2E(Sk))))). The set of all code numbers of finite
sequences is the extension of a bounded formula, as are
the concatenation operation and the partial function that
takes i and n to the ith member of the sequence coded by
n (provided n codes a sequence of i or more elements).
The simplicity of this technique for encoding a finite
sequence of numbers by a single number is the motive for
including exponentiation as a primitive operation.

The details of the assignment of numerical codes to
terms and formulas are highly arbitrary. A motive for the
particular choices here is to avoid fretting over parenthe-
ses. With each term t, we associate a number ©t™, as fol-
lows: The numeral “0” is assigned <0,0>, and the variable
xi is assigned <1,i>. ©St™ is <2,©t™>, and ©(t+r)™, ©(t¥r)™,
and ©(tErz)™ are <3,©t™,©r™>, <4,©t™,©r™>, and <5,©t™,©r™>,
respectively.

A number x is a the code of a term just in case it is an
element of a finite set s with the following property: For
any element y of s, either y = <0,0>; or y = <1,i>, for
some i ≤ y; or y = <2,z>, for some z in s; or y is equal to
one of <3,z,w>, <4,z,w>, and <5,z,w>, for some z and w
in s. s represents a finite tree, with each node labeled by
the code of a term, so that when a node is labeled by a
complex term, nodes beneath it are labeled by the term’s
constituents and so that each leaf of the tree is labeled
either by the code of “0” or by the code for a variable. This
characterization is naturally written out as a S formula,
showing that the set of (code numbers of) terms is recur-
sively enumerable.

The set of terms is, in fact, recursive. To see this, we
note that, if x is not a term, then the attempt to construct
a labeled tree with x at its trunk winds up with at least one

branch that does not terminate in either ©0™ or a variable.
More precisely, x does not encode a term if and only if
there is a sequence <x0,x1,…,xn> of numbers ≤ x with the
following properties:

x0 = x.

If xi has the form <2,y>, then i < n and xi+1 = y.

If xi has one of the forms <3,y,z>, <4,y,z>, or
<5,y,z>, then i < n and either xi+1 = y or xi+1 = z.

If i < n, xi has one of the forms <2,y>, <3,y,z>,
<4,y,z>, or <5,y,z>.

xn does not have either of the forms <0,0> or <1,k>.

This can readily be written out as a S formula, showing
that the complement of the set of terms is recursively
enumerable.

The function Z that takes a number n to the code
number for the numeral n can be described by a recursive
definition:

Z(0) = <0,0> = 5.
Z(m+1) = <2,Z(m)> = 8 + (2E(Pair(1,Z(m)))).

We can convert this recursive definition into an explicit
definition, using a quite general technique that Gödel
obtained by refining an idea from Gottlob Frege’s Begriff-
schrift. Z(n) = k if and only if there is a sequence
<x0,x1,…,xn> with the following features:

x0 = <0,0>.

For m < n, xm+1 = <2,xm>.

xn = k.

This characterization shows that Z is a total recursive
function.

The function that associates a code ©f™ with each for-
mula f is again highly arbitrary. For t and r terms, we let
<6,©t™,©r™> and <7,©t™,©r™> be the codes of t = r and t ≤
r. For f and y formulas, we let <8,©f™> be ©~ f™,
<9,©f™,©y™> be ©(f ⁄ y)™, and <10,i,©f™> be ©($vi)y™. The
proof that the set of codes of formulas is recursive is just
like the corresponding argument for terms.

It is straightforward if somewhat laborious to verify,
just by writing down an appropriate formula, that, for
example, the arithmetical operations corresponding to
forming the disjunction and the conjunction of two for-
mulas, to prefixing a quantifier to a formula, and to sub-
stituting a given term for free occurrences of a variable in
a formula are partial recursive functions. Also, for exam-
ple, that the set of terms in which the variable v17 appears
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and the set of formulas in which v123 appears free are
recursive sets.

proofs and computations

Euclid’s Elements deduces highly sophisticated geometric
theorems as consequences of simple, intuitively obvious
axioms. Aristotle, the father of logic, investigated the
methods by which consequences are derived from
axioms, identifying simple patterns of valid reasoning like
the following so-called syllogism: “All men are animals.
No stone is an animal. Therefore, no stone is a man.” The
methods of reasoning Euclid actually employed were far
more sophisticated than the mere production of chains of
syllogisms, however, and the ancients were generally con-
tent to take it as obvious that Euclid’s deductions were
legitimate, without demanding a detailed survey of
deductive methods.

Meticulous nineteenth-century investigations
revealed the surprising fact that, despite having been
accepted by generations of scholars as the exemplar of
deductive rigor, Euclid’s proofs were often invalid. In
proving a theorem he sometimes imported information
from the accompanying diagram that was not justified by
either the hypotheses of the theorem or the axioms. These
investigations led to a search for fully precise methods of
deduction in which one could have complete confidence.
This search culminated in the widespread acceptance of a
system of precise rules for the first-order predicate calcu-
lus—the logic governing the operators “⁄,” “~,” ($vi), and
“=”—within which the deductions of classical mathe-
matics can be formalized with scrupulous rigor.

With these rules in hand, we can capture the notion
of logical consequence precisely, by pressing it from
below and from above. It is clear that, if a sentence f is a
logical consequence of a theory (set of sentences) G, then
it cannot be possible to choose a domain of discourse and
semantic values for the nonlogical terms so as to make the
members of G all true and f false. Thus a necessary con-
dition for a f to be a logical consequence of G is that f be
true in every model of G. It is also clear, from examining
the rules (for whichever of the standard textbook systems
is convenient), that if f derivable from G, f is a logical
consequence of G; this gives us a sufficient condition for
logical consequence. Gödel’s 1930 Completeness Theorem
shows that these two conditions meet, so that if f is true
in every model of G then f is derivable from G.

The Completeness Theorem applies equally well to
any of many different logical calculi for first-order predi-
cate logic. W.V. Quine developed a particularly conven-
ient system with the following two properties: The (codes

of the) axioms of logic form a recursive set; and each log-
ical consequence of a theory G can be found at the end of
a sequence of sentences, each member of which is either
an axiom of logic, an element of G, or obtained from ear-
lier members of the sequence by modus ponens, the rule
that permits the deduction of y from f and (f r y).
(Such a sequence is a proof of the sentence from G.)
Quine’s axioms will not be written out here.

If G is recursive, the set of pairs <s, ©f™> such that s is
a proof of f from G is a recursive relation, represented by
a S formula we shall abbreviate “s BG ©f™.” (In terminology
introduced below, “BG” “binumerates” the relation.) We
write “BewG(©f™)” to abbreviate “($s)s BG©f™.” Since “BewG,”
is S, the set of logical consequences of G is recursively
enumerable.

William Craig noted a converse result: If the set of
consequences of the theory G is recursively enumerable
then G has the same consequences as some recursive set to
axioms; G is, as they say, recursively axiomatizable. To see
this, note that there is a bounded formula y(x,y) such
that the consequences of G constitute the set of sentences
whose code numbers satisfy ($y)y(x,y). Let GCraig be the
set of all sentences of the form (m = m Ÿ q), for which the
pair <©q™,m> satisfies y(x,y). Then GCraig is recursive
(bounded, in fact), and GCraig and G are logically equiva-
lent.

We would now like to see how any numerical com-
putation by algorithm can be simulated by a logical
deduction from basic arithmetical axioms. QE, a variant
of Robinson’s arithmetic, is the conjunction of the follow-
ing nine statements:

("x)(x = 0 } ~ ($y)x = Sy).

("x)("y)(Sx = Sy r x = y)

("x)(x + 0) = x.

("x)("y)(x + Sy) = S(x + y).

("x)(x ¥ 0) = 0.

("x)("y)(x ¥ Sy) = ((x ¥ y) + x)

("x)(x E 0) = S0.

("x)("y)(x E Sy) = ((x E y) ¥ x)

("x)("y)(x ≤ y } ($z)(x + z) = y).

Q, which we shall talk about later on, is obtained from QE

by deleting the two clauses involving exponentiation.

A straightforward induction on the complexity of
terms shows that, for every closed term t, there is a num-
ber m such that the sentence t = m is a theorem of QE.
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Another induction shows that every bounded sentence is
decidable (either provable or refutable) in QE. Since every
true bounded sentence is provable in QE, it follows that
every true S sentence is provable in QE, since we can prove
an existential sentence by providing a witness. If S is a
recursively enumerable set, it is the extension of some S
formula s. Because every true S sentence is provable in QE

and (because QE is true) no false S sentence is provable,
we have (where “∫” is provability):

For any n, n � S if and only if QE ∫ s(n).

We shall say that s enumerates S in QE. (The same obser-
vation holds for recursively enumerable relations.)

We shall say a formula f binumerates a set S in QE if
and only if, for each n, we have:

n � S if and only if QE ∫ f(n).

n � S if and only if QE ∫ ~ f(n).

If S is recursive then there is a bounded formula c(x,y) such
that ($y)c(x,y) enumerates S in QE, and there is a bounded
formula q(x,y) such that ($y)q(x,y) enumerates the com-
plement of S in QE. To show that S is binumerable in QE, we
need to show that S is enumerable by a formula whose
negation enumerates the complement of S. Developing an
idea of J. Barclay Rosser, Tarski, Mostowski, and Robinson
showed that the following S formula does the job:

($y)(c(x,y ) Ÿ ~ ($z < y)q(x,z)).

Clearly if f binumerates S in QE, it binumerates S in any
consistent theory that entails QE.

A formula y(x,y) functionally represents a total func-
tion ƒ in a theory if and only if, for each k, the following
sentence is a consequence of the theory:

("y)(y(k,y) } y = ƒ(k)).

If ƒ is a total recursive function, we know that there is a
formula f(x,y) that binumerates ƒ in QE. Tarski,
Mostowski, and Robinson showed that the following for-
mula functionally represents ƒ in QE (and hence in any
theory that entails QE):

(f(x,y) Ÿ ("z < y)~ f(x,z)).

the first incompleteness
theorem

We are now ready to see how to construct, for any recur-
sively axiomatizable, true theory that includes QE, a true
sentence that is not a consequence of the theory. The key
to the construction is to see how to produce sentences
that can talk about themselves so that we can construct a

sentence that asserts its own unprovability. Such a sen-
tence cannot be provable since if it were provable it would
be a false consequence of the axioms. So the sentence
must be true. To carry out this plan we use the following
result, one of the masterpieces of modern mathematics:

GÖDEL’S SELF-REFERENCE LEMMA. For any formula
y(y), one can construct a sentence f such that QE ∫ (f }

y(©f™)).

The hard part, the part that requires true genius, is to fig-
ure out what sentence to write down. The easy part is to
verify that the sentence works. Here we shall only attempt
the easy part.

Define a function ƒ as follows: If m is the code of a
formula c(x,y) with only “x” and “y” free, let ƒ (m) be the
code of the formula

($x)($y)((x = m Ÿ c(x,y)) Ÿ y(y)).

Otherwise, ƒ(m) = 0.

This definition can easily be written as a S formula,
showing that ƒ is a total recursive function. Consequently,
there is a formula q(x,y) that functionally represents ƒ in
QE. Let m be ©(q(x,y)™, and f be the following sentence:

($x)($y)((x = m Ÿ q(x,y)) Ÿ y(y)).

Then ©f™ = ƒ(m), and so the following sentences are con-
sequences of QE:

("y)(q(m,y) } y = ©f™).

(($x)($y)((x = m Ÿ q(x,y)) Ÿ y(y)) } y(©f™)).

(f } y(©f™)).

Let G be a consistent, recursive set of sentences that
entails QE. Using the Self-reference Lemma, we can find a
sentence g so that (g } ~BewG ©g™) is a consequence of QE;
g is called the Gödel sentence for G. If g were a consequence
of G, ~ BewG(©g™) would be a consequence of G, and also
BewG(©g™) would be a true S sentence, hence a conse-
quence of QE, hence a consequence of G. This contradicts
the consistency of G. So g is unprovable, so that BewG(©g™)
is false, and g is true. Thus g is our example of a true,
unprovable sentences.

If G is true then G does not prove ~g because ~g is
false, so that g is undecidable in G. Let us say that a theory
D is w-inconsistent if there is a formula c(x) such that
($x)c(x) is a consequence of D, and yet, for each n, ~ c(n)
is a consequence of D. Every w-consistent theory is con-
sistent, so if D is a recursive, w-consistent theory that
entails QE, the Gödel sentence g for D is a true sentence
not provable in D. Hence, for each m, the sentence 
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~ m BD ©g™ is true, hence provable in QE, hence provable in
D. It follows by w-consistency that BewD ©g™ is not a conse-
quence of D, and so ~g is not a consequence of D. Thus the
assumption of w-consistency, rather than truth, is enough
to ensure that g is undecidable in D. Because g is unprov-
able in D, D » {~g} is consistent, although w-inconsistent.
So consistency does not imply w-consistency.

Gödel used g to show that every w-consistent, recur-
sively axiomatizable theory that entails QE is incomplete,
that is, that there are sentences that the theory cannot
decide; this is the First Incompleteness Theorem. Rosser
went a step farther, showing that the assumption of w-
consistency can be weakened to consistency. Rather than
examine Rosser’s proof, we shall derive his conclusion
from a stronger result, one due, in essentials, to Tarski,
Mostowski, and Robinson:

RECURSIVE INSEPARABILITY THEOREM. There is no
recursive set that includes the consequences of QE and
excludes all the sentences refutable in QE.

Suppose C were such a recursive set, and take a for-
mula m(x) that binumerates C in QE. The Self-reference
Lemma gives a sentence n such that (n } ~ m(©n™)) is a
consequence of QE. We derive a contradiction by examin-
ing two cases:

Case 1. n � C. Then QE ∫ m(©n™), and so QE ∫ ~ n.
Thus u is a sentence refutable in QE, and so it is excluded
from C. Contradiction.

Case 2. u � C. Then QE ∫ ~ m(©n™), and so QE ∫ n.
Thus u is a consequence of QE, and so an element of C.
Contradiction.

Corollary. No consistent theory that entails QE

has a recursive set of consequences.

This follows from the fact that, if a consistent theory
entails QE, it excludes the sentences refutable in QE.

Corollary (Rosser’s Theorem). No consistent,
recursively axiomatized theory that entails QE is com-
plete.

If G is consistent, recursively axiomatized, and complete,
then the complement of G is recursively enumerable,
since it is the union of the set of non-sentences with the
set of sentences whose negations are provable in G.

Corollary. No theory consistent with QE has a
recursive set of consequences.

If D were such a theory then the set of sentences y such
that (QE r y) is a consequence of D would be a consistent,

recursive set of sentences, closed under consequence, that
included QE.

Corollary (Church’s Theorem). The set of logically
valid sentences in not recursive.

The valid sentences are the consequences of the empty
theory, which is consistent with QE.

mathematical induction

QE is a weak axiom system. It cannot prove the associative
law of addition or multiplication, nor can it prove the
commutative law of addition or multiplication. The sys-
tem is weak because it leaves out the essential feature of
the natural number system, the principle of mathematical
induction, according to which any collection of natural
numbers that includes 0 and is closed under the successor
operation has to include all the natural numbers. Modulo
QE, the principle is equivalent to the thesis that the natu-
ral numbers are well-founded, that is, that any nonempty
collection of natural numbers has a least element.

Richard Dedekind showed that the system one gets
from QE by adding the principle of mathematical induc-
tion completely characterizes the natural numbers. The
system is categorical, that is, there is an isomorphism—a
one-one correspondence that preserves mathematical
structure—between any two models of the system. Thus
if � and � are models of QE plus the principle of induc-
tion, let ƒ be the smallest class that includes the pair <0�,
0�> and includes <S�(x), S�(y)> whenever it contains
<x,y>. It is easy to verify, using induction several times,
that ƒ is an isomorphism. It follows that the system is
complete, since if it left f undecided, it would have a
model � in which f is true and a model � in which f is
false; but then � and � could not be isomorphic.

Peano Arithmetic (PA), is the system used to formal-
ize the principle of induction into a precise system of
axioms. Its axioms are QE together with all instances of
the induction axiom schema:

((R(0) Ÿ ("x)(R(x) ÆR(Sx)))Æ("x)R(x)).

An induction axiom is a sentence of the language of arith-
metic obtained from the schema by substituting a for-
mula of the language of arithmetic for “R,” then prefixing
universal quantifiers to bind all the variables other than
“x” that appear free in the substituted formula.

In view of Dedekind’s categoricity theorem, it is sur-
prising to realize that PA is incomplete. But incomplete it
must be, since it is a true, recursively axiomatized theory
that entails QE. The explanation is that the induction
axiom schema does not fully capture the principle of
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mathematical induction. It tries to assure us that every
nonempty collection has a least element, but only suc-
ceeds in telling us that every nonempty collection that is
the extension of a predicate (with parameters) of the lan-
guage of arithmetic has a least element.

Let g be the Gödel sentence for PA. We know that g
isn’t a consequence of PA, so that, by the Completeness
Theorem, there is a model � in which all the axioms of PA
+ ~ g are true. In � there is an element g that satisfies “xBPA

©g™.” For each n, “~nBPA ©g™.” is a theorem of PA, so g must be
different from the referents of all the numerals 0, 1, 2, ….
Instead, g is one of the nonstandard numbers that lie above
all the standard numbers in the relation � assigns to “≤.”

It is worth emphasizing because there has been some
confusion on this score that the existence of nonstandard
models of PA does not depend on the First Incomplete-
ness Theorem. Their existence follows from the Com-
pactness Theorem, according to which an infinite set of
sentences has a model if every finite subset does, which
Gödel derived from the Completeness Theorem. Let G be
a consistent theory that entails QE. Add a new constant “c”
to the language, and let Gc be the union of G with the set
of sentences “~ c = n,” for n natural number. Any finite
subset of Gc has a model, obtained by taking a model of G
and letting “c” denote a sufficiently large standard num-
ber. The Compactness Theorem gives us a model of Gc,
which means we have a nonstandard model of G. This
construction works even if we take G to be true arithmetic,
the set of sentences true in the standard model, even
though true arithmetic is complete. Because it is com-
plete, the First Incompleteness Theorem tells us that true
arithmetic is not recursively axiomatizable.

the second incompleteness

theorem

The proof of the First Incompleteness Theorem showed
that, if G, a recursively axiomatized theory that entails QE,
is consistent, then the Gödel sentence g for G is unprov-
able in G. Using “Con(G)” as an abbreviation for 

“~ BewG(©~ 0/=0/™),”

we can formalize this result in a sentence of the language
of arithmetic:

(Con(G) r ~ BewG(©g™)).

If we were able to prove this conditional in G, we could
conclude that, if Con(G) were provable in G, ~ BewG(©g™)
would be provable in G. Since we already know that ~
BewG(©g™) is only provable in G if G is inconsistent, we

could conclude that Con(G) is only provable in G if G is
inconsistent.

Can we prove the conditional in G? We certainly can-
not do so if we take G to be QE, for we can scarcely prove
any significant generalizations in QE. We can, however,
prove the conditional if we take G to be PA. This is hardly
surprising, since nearly all our reasoning about natural
numbers can be formalized in PA. The details are, nonethe-
less, burdensome; so we only present a faint sketch here.

Let G be a recursively axiomatized theory that entails
PA. M. H. Löb singled out the following three principles
as central to Gödel’s proof that, if G is consistent, it does
not prove Con(G):

(L1)  If G ∫ f, then G ∫ BewG(©f™).

(L2)  G ∫ (BewG(©f™) r BewG(©BewG(©f™)™)).

(L3)  G ∫ (BewG(©(f r Y)™) r (BewG(©f™)r BewG(©Y™)).

We have already seen why (L1) has to hold. If f is a con-
sequence of G, BewG(©f™) is a true S sentence, hence prov-
able in QE, hence provable in G. (L2) is obtained,
laboriously, by formalizing the proof of (L1). In fact, G
proves (q r BewG(©q™)), for each S sentence q. (L3) is easy.
If we have proofs of (f r y) and f, we get a proof of y by
concatenating the two proofs and tacking y on the end.

Given the Löb conditions, the proof of the Second
Incompleteness Theorem, according to which, if G is a con-
sistent, recursively axiomatized theory that entails PA,
then G does not prove its own consistency, is straightfor-
ward. Let g be the Gödel sentence for G. Because of the
way g was constructed, we have:

G ∫ (g r ~ BewG(©g™)),

which is logically equivalent to:

G ∫ (g r (BewG(©g™) r ~ 0=0)).

One application of (L1) and two applications of (L3) give
us this:

G ∫ (BewG(©g™) r (BewG(©BewG(©g™)™) r BewG(©~ 0/=0/™))).

(L2) gives us this:

G ∫ (BewG(©g™) r BewG(©BewG(©g™)™)),

and these two results together give us:

G ∫ (BewG(©g™) r BewG(©~ 0/=0/™)).

By contraposition,

G ∫ (~ BewG ©~ 0/=0/™) r ~ BewG (©g™)),

that is,

G ∫ (Con(G) r ~ BewG (©g™))
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Now assume

G ∫ Con(G).

Then

G ∫ ~ BewG (©g™).

By the way g was constructed,

G ∫ g.

Hence, by (L1),

G ∫ BewG (©g™),

and so G is inconsistent.

In accepting PA, we recognize that the axioms of PA
are all true. If the axioms are all true then the theory is
certainly consistent, and if the theory is consistent its
Gödel sentence is true. So we have good reason to accept
the Gödel sentence for PA, even though it is not a conse-
quence of PA. If in this argument we replace PA with our
total arithmetical theory—the (admittedly, vaguely
defined) totality of arithmetical sentences we are willing
to accept as true—we seem to get the curious result that,
assuming that our total theory is recursively enumerable,
we accept the Gödel sentence for our total theory even
though it is not a consequence of the theory. But this con-
tradicts the characterization of our total theory.

J. R. Lucas (1961) and Roger Penrose (1989) took this
puzzling situation as reason to believe that the cognitive
processes of the human mind cannot be simulated by any
purely mechanical device, and that this conclusion
undermines the prospects for a naturalistic conception of
mind, according to which the human mind is a product
of the orderly operation of the laws of nature, not in prin-
ciple any more mysterious or less constrained by physical
law than a player piano or a personal computer. Adher-
ents to the computational theory of mind hold that the
operations of the mind are usefully understood on the
model of a sophisticated electronic computer, and even
naturalists who are not advocates of the computational
model will be inclined to say that the facts that the human
body is produced by natural selection rather than con-
scious design and that its central processing unit is 
carbon-based rather than silicon-based will not affect its
capabilities in any fundamental way, so that, according to
a naturalistic conception, the cognitive activities of a
human being can, in principle, be simulated by a purely
mechanical device.

The connection between mechanism and recursive
enumerability is given by a variant of the Church-Turing
Thesis, supported by similar evidence, that declares that
the set of numbers accepted by a mechanical input-out-

put device is invariably recursively enumerable. This
includes nondeterministic machines, whose operation is
to some extent a matter of random chance, so that the set
S is accepted by the machine just in case, for any n, n is in
S if and only if there is some possible computation of the
machine on input n that yields a positive outcome, as well
as deterministic machines for which the course of a com-
putation is uniquely determined by its input.

The argument that our total arithmetical theory is
not recursively enumerable proceeds by reductio ad
absurdum. If the theory were recursively enumerable, it
would be recursively axiomatizable, so it would have a
Gödel sentence. But we can see that the Gödel sentence is
true, even though it is not part of the total theory.

The Lucas-Penrose argument is vulnerable to two
criticisms. First, for naturalism to be correct, there has to
exist a recursive axiomatization of our total theory. In
order to construct the Gödel sentence, we have to be able
to specify a recursive axiomatization by writing down a
formula that binumerates it. However it is perfectly pos-
sible for a recursive axiomatization to exist without our
being able to specify it.

Second, even if we were able to specify a recursive
axiomatization, perhaps by analyzing a futuristic brain
scan, it is hard to see how we could be justified in being
completely confident that our total theory is consistent. If
we decide to be strict about what arithmetical sentences we
are willing to count as “accepted,” so that we only regard a
sentence as part of our total theory if we arrive at it by
unimpeachably lucid reasoning, we shall increase our con-
fidence that our total theory is consistent, but raising the
bar this way will also heighten the hurdle that the Gödel
sentence has to pass in order to count as “accepted.” There
are different standards we might use for when we are will-
ing to count a sentence as proven, and each standard has a
different Gödel sentence, but however high we set the stan-
dard the Gödel sentence corresponding to that standard
cannot pass it, on pain of inconsistency.

the logic of provabilty

If we explicitly embrace a theory G, so that we are willing
consciously to acknowledge that the axioms of G are all
statements we regard as true then we surely ought to
regard G as consistent. Yet (assuming that G implies PA
and is recursively axiomatizable and consistent) the state-
ment that G is consistent is not provable in G. Thus the
arithmetical statements that we commit ourselves to in
embracing G go beyond what G itself entails.
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The disparity between what consciously accepting G
commits us to and what G entails is even wider than the
Second Incompleteness Theorem indicates. Accepting G
means acknowledging that all the consequences of G are
true. For a given sentence f, we may not know whether f
is a consequence of G—there is after all no algorithm to
tell us—but at least we accept that, if f is a consequence
of G, f is true. Consciously accepting G commits us to the
conditionals BewG(©f™) r f), but they are not in general
consequences of G. In fact such a conditional is a conse-
quence of G only if its consequent is a consequence of G.

Löb’s Theorem. Let G be a recursively axioma-
tized theory that entails PA. If BewG(©f™) r f) is
a consequence of G, so is f.

We can regard the Second Incompleteness Theorem
as the special case of Löb’s Theorem in which f is taken to
be the sentence “~ 0=0.” Conversely we can derive Löb’s
Theorem from the Second Incompleteness Theorem. The
argument, which is due to Saul Kripke, utilizes the obser-
vation that, for any y and q, G ∫ (y r q) if and only if G »
{y} ∫ q, and the fact that this observation is provable in
PA.

Suppose that f is not a consequence of G. Then G »
{~ f} is consistent, which implies, by the Second Incom-
pleteness Theorem, that Con(G » {~ f}) is not a conse-
quence of G » {~ f}. Thus we have:

G » {~ f} �\ ~ BewG » {~f}(©~0=0™)

G » {~ f} �\ ~ BewG(©(~ f Æ ~0=0™)

G » {~ f} �\ ~ BewG(©f™)

G �\ (~ f r ~ BewG(©f™))

G �\ BewG(©f™) r f)

Conditionals of the form BewG(©f™) r f) are called
reflection principles. We cannot obtain them by working
within G. We get them from the outside by reflecting on
the fact that G is a theory we accept.

We can describe the logic of provability precisely by
utilizing the methods of modal logic. Modal sentential
calculus has, in addition to formulas built up from atomic
formulas by the familiar connectives “⁄” and “~,” a new
connective “~.” “~f,” usually read “It is necessary that f,”
is here understood to mean, “It is provable in G that f,”
where G is a consistent, recursively axiomatizable theory
that implies PA. An interpretation of the modal sentential
calculus is a function i that associates an arithmetical sen-
tence with each modal formula, subject to the conditions
that i(f ⁄ y) be equal to (i(f) ⁄ i(y)), i(~f) be equal to 
~ i(f), and i(~f) be equal to BewG©i (f)™. A modal formula

f is always provable if, for each interpretation i, i(f) is
provable in G. f is always true if, for each f, i(f) is true.

(L1) tells us, if i(P) is provable, i(~P) is provable, so
that the set of always-provable formulas is closed under
necessitation, the rule of modal logic that infers ~q from
q. (L2) tells us that (~P r ~ ~ P) is always true, and the
formalization of (L2) tells us that it is always provable.
(L3) tells us that (~(P r Q) r (~P r~Q)) is always true;
it is easily seen to be always provable as well. Löb’s Theo-
rem tells us that whenever i(~P r P) is a theorem, i(P) is
a theorem. Formalizing his proof, we see that the formula
(~(~P rP) r ~P) is always provable and always true.

Robert Solovay deployed an ingenious application of
the Self-referential Lemma within the possible-world
semantics for modal logic to show that, provided G does not
prove any false Σ sentences, a formula is always provable if
and only if it is derivable by modus ponens and necessitation
from sentential-calculus tautologies (formulas that are
assigned the value “true” by every function assigning truth-
values to formulas that respects the meanings of “⁄” and
“~”) and instances of the following schemata:

(~(f r y) r (~f r ~y))

(~(~f r f) r ~f)

Assuming G is true, a formula is always true if and only if
it is derivable by modus ponens from always-provable for-
mulas and instances of the reflection principle (~f r f).

beyond the language of

arithmetic

Gödel’s results apply not only to the language of arith-
metic but to any language into which the language of
arithmetic can be translated. Thus any recursively axiom-
atized, consistent theory into which one can translate QE

is incomplete. The appropriate notion of translation was
made precise by Tarski, Mostowski, and Robinson. An
interpretation (what they call a “relative interpretation”)
of an arithmetical theory G into a language ã is obtained
by doing the following: First, having rewritten all the sen-
tences in G so that the “+” sign only appears in the canon-
ical form “(vi + vj) = vk,” pick a formula “A(x,y,z)“ of ã
and replace “(vi + vj) = vk,” by “A(vi,vj,vk),” changing
bound variables to avoid conflicts. Do the same thing for
the other function signs and “0” and pick a formula L(x,y)
to replace “≤.” Next pick a formula “N(x)” of ã to repre-
sent the members of the domain of ã that are to play the
role of natural numbers, and restrict the quantifiers, writ-
ing “($vi)(N(vi Ÿ …” in place of ($vi). Finally add an
axiom ensuring that “A(x,y,z)” represents a function on
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the set of things that satisfy “N(x),” writing ” ("x)(N(x) r
("y)(N(y) r ($z)(N(z) Ÿ ("w)(N(w) r (A(x,y,w) } w =
z)))).” Do the same thing for the other function signs and
“0.” If the theory thus obtained is a consequence of the
theory D of ã, D is said to interpret G.

We can translate the language of arithmetic into the
language of set theory, identifying a number with the set of
its predecessors, so that 0 corresponds to Ø, 1 corresponds
to {Ø}, 2 corresponds to {Ø, {Ø}}, and so on, and defining
set-theoretic analogues of “+,”“¥,”“E,”“S,” and “£” accord-
ingly. The axioms of set theory, in any of its normal ver-
sions, interpret PA. We can arithmetize proofs in set theory
just as we artimeticized proofs in PA, proving the Second
Incompleteness Theorem for set theory. The axioms of set
theory, if consistent, cannot prove their own consistency.

This result devastates the Hilbert program. Hilbert
wanted to prove the consistency of set theory in a finitis-
tic theory much weaker than set theory, and it turns out
that proving the consistency of set theory requires a the-
ory even stronger than set theory.

The standard way to prove that there is no algorithm
for testing whether a given sentence is a consequence of a
theory G—that is, for showing that G is undecidable—is to
interpret an arithmetical theory strong enough to prove
the First Incompleteness Theorem into G. As far as what
we have looked at so far, we would need to take our arith-
metical theory to be QE, but we can actually do much bet-
ter. We can define exponentiation in terms of “0,”“S,”“+,”
and “¥,” and we can prove the First Incompleteness The-
orem in the dialect of the language of arithmetic without
“E,” with Q in place of QE. In trying to prove undecid-
ablity results, this improvement (which is due to Gödel)
is an enormous practical advantage.

Let us define b(u,v,w) to be the remainder obtained
on dividing u by (v¥w) + 1. b can be defined by a
bounded formula in the language of arithmetic. For x >
0, we have (xEy) = z if and only if the following formula
is satisfied:

($u)($v)((b(u,v,0) = 1 Ÿ ("w < y)b(u,v,Sw) = (b(u,v,w)
¥ x)) Ÿ b(u,v,y) = z).

The right-to-left direction of this characterization is
obvious. What is hard is to verify the left-to-right direc-
tion by finding an appropriate u and v. We make use of
the Chinese Remainder Theorem, which says that, given
p0, p1, … , pn relatively prime (that is, no two of the pis
have a common divisor other than 1), and given a
sequence a0, a1, … , an, with each ai < pi, we can find a
number b such that ai is the remainder on dividing b by

pi, for each i. A proof of the theorem can be found in any
number-theory textbook or in George Boolos’s The Logic
of Provability (1993).

Given x,y, and z with (xEy) = z, let v = z!, the prod-
uct of the positive integers £ z. If s < t £ z, then (s¥v) + 1
and (t¥v) + 1 are relatively prime, since if p were a prime
that divided both of them, p would divide (t - s) ¥ v, and
so, since (t - s) is one of the factors of v, p would divide v.
But this enables us to conclude that the remainder on
dividing (t¥v) + 1 by p is one, contrary to our assumption
that p divides (t¥v) + 1. Use the Chinese Remainder The-
orem to find u so that, for each t ≤ y, xEt is the remainder
on dividing u by (t¥v) + 1.

Now that we have our S definition of exponentia-
tion—S, that is, in the restricted language—we can apply
our standard tricks for pulling quantifiers to the fronts of
formulas to convert a S formula of the language with expo-
nentiation to a S formula of the language without expo-
nentiation. With this emendation, all the proofs go through.

The use of interpretations originates with Beltrami’s
proof of the consistency of non-Euclidean geometry. By
interpreting non-Euclidean geometry (Euclid’s axioms
with the axiom of parallels replaced by its negation) into
Euclidean geometry, Beltrami showed that if the latter is
consistent then so is the the former. Beltrami’s strategy was
exploited by Alex Wilkie and Samuel Buss to obtain a dra-
matic strengthening of the Second Incompleteness Theo-
rem, applying it to theories that merely contain Q rather
than PA. The details are complicated, but the idea is to
interpret into Q a theory that, while weaker than PA (the
induction axiom schema being restricted), is just strong
enough to provide the Löb conditions (L1)-(L3). The
interpretation leaves the arithmetical symbols unchanged
but restricts the domain of quantification to an initial seg-
ment, replacing “($x)” by “($x)(J(x) Ÿ …,” for artfully cho-
sen “J(x);” call the sentence thus obtained from f “fJ.”

Where G is a recursively axiomatized theory that
includes Q, let G-J be the set of sentences f for which G
entails fJ. Suppose that G entails Con(G). Con(G) entails
Con(G)J, so that Con(G) is in G-J. The argument Beltrami
used tells us that if G is consistent then G-J is too. This proof
can be formalized in G-J, so that G-J entails Con(G-J).
Because (L1)-(L3) yield the Second Incompleteness Theo-
rem for G-J, G-J must be inconsistent. Consequently G is
inconsistent.

truth

There is a bounded formula of the language of arithmetic
that defines the set of prime numbers, and there is a S for-
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mula that defines the set of consequences of PA. Tarski
proved that there is no formula of the language of arith-
metic that defines the set of codes of true sentences. The
difficult part of his argument was to say precisely what
would be required for a formula to define truth; the easy
part is to show that there is no such formula.

A proposed definition of truth is a formula of the
form (Tr(x) } t(x)), where t(x) is a formula of the lan-
guage of arithmetic. A proposed definition is materially
adequate, Tarski tells us, if and only if it lets us derive all
sentences of the form:

(T) Tr(©f™) } f.

To see that there is no materially adequate definition,
apply the Self-reference Lemma to find a sentence l so
that (l } ~t(©l™)) is a consequence of Q. The argument
here is a formalization of the paradox posed by Eubu-
lides, who asked whether a man who says “I am lying”
speaks truthfully.

We can define the set of true sentences of the lan-
guage of arithmetic within, say, the language of set theory,
but we cannot define it within the language of arithmetic.
This negative result obtains for any language into which
we can translate the language of arithmetic.

The question of what moral, if any, these formal results
have for the notion of truth as applied to natural languages
is deeply troubling. Tarski showed that there is no formula
of the language of arithmetic that means (or even has the
same extension as) “true sentence of the language of arith-
metic.” Manifestly there is a phrase of English that means
“true sentence of English,” and Tarski and Eubulides’ rea-
soning would appear to apply to that phrase just as to the
formal language. Is there in spite of this a coherent way to
talk about the truth of an English sentence?

See also Analysis, Philosophical; Aristotle; Church,
Alonzo; Computability Theory; Craig’s Theorem;
Geometry; Gödel, Kurt; Hilbert, David; Infinity in
Mathematics and Logic; Kripke, Saul; Logic, History of:
Modern Logic; Logical Paradoxes; Mathematics, Foun-
dations of; Russell, Bertrand Arthur William; Tarski,
Alfred; Turing, Alan M.; Wittgenstein, Ludwig Josef
Johann; Zeno of Elea.
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Vann McGee (2005)

godfrey of fontaines

Godfrey of Fontaines, the scholastic philosopher and the-
ologian, was a native of Fontaines-les-Hozémont in the
principality of Liège. He was born of a noble family about
the middle of the thirteenth century, the exact date
unknown. About 1270 he began studies at the University of
Paris and became a magister regens in the faculty of theol-
ogy there in 1285, having studied under Henry of Ghent
and Gervais of Mt. St. Elias. His regency lasted until 1297,
and during this period he produced fourteen of his Quodli-
bets, his most important works. There is evidence that he
resumed teaching at Paris about 1303 or 1304, composing
Quodlibet XV at this time. Canon of Liège, probably also of
Paris, and provost of Cologne (1287–1298), Godfrey was
chosen bishop of Tournai in 1300 but renounced his rights
when the election was contested. He is cited among the
senior members of the Sorbonne until 1306 and probably
died about that time. The obituary at the Sorbonne dates
his death October 29, but does not give the year.

Godfrey’s doctrinal preferences generally favor the
positions of St. Thomas Aquinas, but he manifests a
marked independence of judgment on certain points and
sometimes works out the logic of Thomas’s principles to
different conclusions. Some historians (M. De Wulf, E.
Gilson) see Godfrey as an opponent of Thomas’s distinc-
tion between essence and existence in finite being, and
attribute Godfrey’s stand to a hard-and-fast Aristotelian-
ism that refused to admit an act of the form. Others see
Godfrey as opposing the realism of Giles of Rome rather
than Thomas. Godfrey held that in the divine mind there
is no proper idea of individuals distinct from their
species. On the hotly debated issue of the oneness or plu-
rality of substantial forms in composite beings, Godfrey

always remained hesitant. He would have favored the
doctrine of the unicity of form were it not for the fact that
it seemed to contradict theological truths.

Godfrey showed particular acumen in his treatment
of psychological problems. Under the influence of Aver-
roes, probably through Siger of Brabant, he espoused an
Aristotelianism stricter than that of most of his contem-
poraries. Godfrey criticized and rejected the so-called
Augustinian theory on the genesis of ideas, insisting on
the close dependence of human concepts on sense expe-
rience. He insisted strongly on the passive nature of the
human intellect—the abstractive function of the agent
intellect does not consist in the production of any posi-
tive disposition in the sensible image upon which it
works, but in disregarding in a merely negative way the
concrete particularizations characteristic of the image.
This outlook is intimately connected with an Avicennan
realism of abstract essence, so that Godfrey held that the
intellect does not produce intelligibility or universality
either in things or in images, but that the agent intellect
places the images under an illumination such that the
quiddity or essence of the object can appear alone and act
on the possible intellect and become known to us.

In his explanation of human free will Godfrey
adhered closely to the Thomistic doctrine, but he insisted
more than Thomas upon the freedom of the intellect as
its foundation. Against the voluntarism of Henry of
Ghent, Godfrey stressed the formal influence of the intel-
lect upon the will to the point of making it an efficient
cause, whereas Thomas, in different historical circum-
stances against the Averroists, minimized the formal
influence of the object upon the will. In other respects
Godfrey did not break cleanly with the Augustinian tradi-
tion. For example, he made an interesting equivalence of
the active and passive intellects with Augustine’s “mem-
ory,” the passive intellect inasmuch as it conserves species
and is a habitus, the active intellect inasmuch as it con-
tributes to actual knowledge.

Godfrey was a lively controversialist, combating at
length the opinions of his contemporaries, particularly
Henry of Ghent, Giles of Rome, and James of Viterbo. Not
only did he engage in an active dialogue with his con-
temporaries, but he also occupied himself with pressing
problems—moral, legal, social, and political—arising from
daily life. Among his admirers can be listed John the Wise,
Peter of Auvergne, and Gerard of Bologna; among his crit-
ics, Bernard of Auvergne, Gonsalvus of Spain, and John
Duns Scotus. His influence was widespread and lasted well
into the fourteenth century but waned thereafter.
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