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P R O V A B I L I T Y  I N T E R P R E T A T I O N S  OF 
MODAL LOGIC 

BY 

R O B E R T  M. SOLOVAY 

ABSTRACT 

We consider interpretations of modal logic in Peano arithmetic (P) determined 
by an assignment of a sentence v* of P to each propositional variable v. We put 
( l )*  = "0 = 1", (X ~ tO)* = "X * -'-* q'*" and let (F-1 • be a formalization of "X* 

is a theorem of P" .  We say that a modal formula, X, is valid if X * is a theorem of 
P in each such interpretation. We provide an axiomitization of the class of valid 
formulae and prove that this class is recursive. 

w Introduction 

1.1. The language, M, of propositional modal logic, has an infinite stock of 

propositional variables, v0, Vl , ' - . ,  a propositional constant, • (denoting false- 

hood), the binary propositional connective, -% (material implication), and the 

modal operator  F-]. (The standard interpretation of "1-1X" is "X is necessarily 

true".  In this paper "f--IX" is some variant of "X is provable".)  

We define the other Boolean and modal connectives in terms of these in some 

usual way. In particular, ~ ) (  (X is posssible) is ---11-l-~ X. 

A well-formed formula of M will be referred to as a modal formula or simply 

as a formula if no confusion is likely. 

1.2. P is the usual formalization of Peano arithmetic. (Cf. [3, w We shall 

assume that the language of P is enriched with a description operator  so that we 

may introduce defined terms freely. (Cf. [3, w We let n, the numeral for n, be 

S"0. If X is a formula of P, 'X' denotes the numeral of the G6del number of X. 

Bew (x) is the formula that expresses "x  is the G6del number of a theorem of 

1.3. An interpretation of M in P is a function that assigns to each formula X 

of M a sentence, X* of P, and which satisfies the following requirements: 

1) (• ="O = r ' ;  
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2) (X ~ q,)* = "X* ~ q,*"; 

3) ( [ ~ X ) * = " B e w ( ' x * ' )  ''. 

Evidently each map of the set of variables of M into sentences of P has a 

unique prolongation to an interpretation of M in P. 

1.4. A modal formula X is P-valid if, in every interpretation, X* is a theorem 

of P. Our goal is to characterize the set of P-valid formulae. We will show that 

they are precisely the theorems of a certain system for modal logic, G. (The " G "  

is for "G6de l" .  The key axiom for G is an expression of G6del 's  second 

incompleteness theorem.) 

Here is how this paper is organized. In w we describe the system G. It will be 

evident that each theorem of G is P-valid. In w we work out a Kripke-style 

semantical analysis for G and prove that G has the finite model property. (It will 

then follow that the set of theorems of G is recursive.) In w we prove a 

technical lemma which, roughly speaking, allows us to imbed a finite Kripke 

model of G within Peano arithmetic. Our characterization of P-valid formulae 

follows readily. 

Let w be the set of non-negative integers. We say that a formula X is w-valid 

if, in each interpretation, )(* is true in the standard model, (w ; + , -  ). In w we 

give a characterization of the set of ~o-valid formulae, and show that this set is 

recursive. 

Finally, in w we state without proof various further results on G and on other 

provability interpretations. 

1.5. My interest in this problem was stimulated by a recent announcement of 

Boolos [1]. He formulates the system G (he calls it L),  and proves that a formula 

without[me variables is P-valid itI it is a theorem of G. (This settles problem 35 

of [2].) Aside from Boolos' work, my main source for inspiration was the work of 

Kripke on the semantics of modal logic [4]. 

The work presented in w and w was known to researchers in this area, e.g., 

Kripke, Boolos, deJongh; they were also aware of the natural conjecture that the 

theorems of G are precisely the P-valid formulae. Thus the real contribution 

this paper makes is in w Nevertheless, for expository purposes, I have decided 

to include the material of w167 

w The system G 

2.1. In the following presentation, X and 0 are metavariables ranging over 

modal formulae. G is the smallest collection of formulae containing the 

following axiom schemata and closed under the following rules of inference: 
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A0. All tautologies are axioms. 

A1. [] (X->t0).-->.  (7qX--->Dto). 

A2. [2X. ---> .[313X. 

A3. [](I-] X --, X ) .--> . [-] X. 

R1. If kX---> tO and kX, then kt0. 

R2. If kX, then k [ ]x .  

2.2. REMARKS. 

1) deJongh has shown that A2 can be derived from the remaining axioms 

and rules. 

2) Note that, in contrast to R2, X--~ [] X is not a theorem schemata of G. 

(This may easily be seen using Kripke models. Cf. w 

3) Any substitution instance of a theorem of G is again a theorem of G. 

4") We use k, decorated perhaps with subscripts, to indicate provability in a 

formal system. 

2.3. LEMMA. Every  theorem o f  G is P-va l id .  

PROOF. The proof will be by induction on the number of axioms and rules of 

inference used in a G-proof  of to. The discussion will split into cases according to 

the last rule or axiom schema cited in the proof of to. 

The cases of A0 and R1 are evident. It is easy to show in P that the theorems 

of P are closed under modus ponens, which handles A1. 

Bew (x) is a Xo formula, i.e., it is provably equivalent in P to a formula of the 

form (=]y)R(x, y) with R (the standard formalization of) a primitive recursive 

predicate. It is a standard fact about Xo sentences (owing ultimately to the 

"numeraiwise representability" of primitive recursive formulae such as R), that 

if a X~ sentence is true, it is provable. (Cf. [3, w theorem 27].) This shows that 

our lemma is true in the case the last step in the G-proof  is an instance of R2. 

Moreover,  the proof of the "standard fact" can be formalized in P, handling the 

case of A2. (Cf. [3, p. 244, remark 1].) 

It remains to handle the most interesting axiom, A3. We argue in P. We are 

given a sentence X such that kpBew ( 'X')-~ X. We must show that kPX. (This is 

due to L6b [5]. L6b's theorem is essentially just the second G6del incomplete- 

ness theorem as we shall see in a moment.)  We have: 

i) k ,Bew( 'x ' ) - -> X. 

ii) kp -1X ---> --7 Bew ('X')- 

iii) f-, --7 X --> Con (P + ' - aX '  ). 
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Whence, P + ' ~ X '  proves its own consistency. By the second G6del incom- 

pleteness theorem [3, theorem 30] the system P + ' ~ X '  is inconsistent, i.e., 

iv) F~,X. 

This completes the discussion of case A3. The lemma is now proved. 

2.4. LEMMA. 1) IfOFx---~O, thenOFOx.--,.fqO. 
2) GFD(x ^O). ~-~.IqX ̂ I-]O. 

PROOF. 1) Say GFX--~O. By R2, GI-[(X--*O ). By A1, 

G t-[](x-~ O).---,.FIx---,F-]O. By R1, G F[X--',f-]O. 
2) We shall use the phrase "by propositional logic" to indicate uses of A0 

and R1. We have: 

i) FI'-'J(X A 0) . - -" .  []-IX, F-I(X ^ 0) "--~- DO (by (1) of this lemma); 

ii) FI-'](X ̂  0).--*.  I--]X ̂  E l0  (by (i), propositional logic); 

iii) I-F']x~[3(O~(X ^ 0)) (by (1)); 

iv) FI-'I(0--~ (X ^ 0)).-->. [] 0 ---> I-] (X ^ 0)  (by A1); 

From (ii), (iii) and (iv), by propositional logic, (2) of the lemma follows. 

w The semantics of G 

3.1. Let X be a set and > a binary relation on X. (We do not assume, for the 

moment, that > is transitive.) We write " < "  for the converse relation: xl < x2 

iff x2 > xl. Similarly, for xl, x2 in X, x~ < x2 iff x2 ~ xl iff [x~ < x2 or x~ = x~]. 

3.2. We begin by recalling the Kripke semantics for modal logic. Our 

terminology is slightly different from that of Kripke [4]. 

A frame is a pair ( X ; > )  where X is a non-empty set and > is a binary 

relation on X. The intuition is that X is the set of possible worlds, x~ > x2 if the 

world x2 is accessible to x~. 

(The following example is a good one to contemplate briefly. X is the set of 

consistent recursively axiomitized extensions of Peano arithmetic. T~ > T2 iff 

T~ J-Con (T2). To make this precise, it is necessary to view a theory as provided 

with a fixed recursive enumeration of its axioms. Otherwise, Con (T) would not 

be well-defined. 

Note that in this example, we never have T >  T (by the second G6del 

incompleteness theorem).) 

3.3. Let V be the set of propositional variables. As usual, 2 = {0, 1} is taken 

as the set of truth values (with 0 being falsehood and 1 being truth). In the usual 

way 2 is a Boolean algebra. 

A model (over the frame (X; > )) is a map e :  V • X---~2. 
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We prolong e to a map e : M x X ~ 2. We define e (X, x)  by induction on the 

number  of logical connectives in X: 

1) e (&,x )  = O. 

2) e(x - - -~b ,x )= l if e ( x , x ) = O  or e(~b,x)= l; 

e ( x ~  O,x) = 0 if e ( x , x )  = 1 and e(~b,x)= O. 

3) e ( r - ]X,x)=  1 itt (Vy) (y < x ~ e ( x , y ) = l ) ;  

otherwise e (V1 X, x)  = O. 

We sometimes say "X holds at x "  (with respect to the model (X ;  > ,  e)) to 

mean e (X, x) = 1. 

The intuition behind (1) and (2) of the definition is evident. (3) says that l--I X 

holds at x iff X holds in all worlds possible relative to x. 

We say that X is valid in the frame (X;  > )  if for every e : V • X ~ 2  and 

every x ~ X, we have e(x, x)  = 1. 

3.4. Our  next goal is to characterize those frames in which the theorems of G 

are valid. We shall prove that they are precisely those frames (X;  > ) such that 

< is transitive and well-founded. 

Let S be a non-empty collection of frames. Let T be the set of formulae valid 

in each frame of S. It is easy to check that T is closed under  the rules of inference 

R1 and R2 and contains all instances of the axiom schemata A0 and A1. 

LEMMA. The frame (X;  > ) satisfies A2 iff < is transitive. 

PROOF. ( ~ ) :  We assume < is transitive and show that A2 is valid. Let 

e : V x X - - - ~ 2  give a model  on the frame (X;  > ) .  Let x ~ X ,  and X a formula 

such that [ ]X holds at x. We must show that IS]2X holds at x. 

Suppose not. Then for some y < x, [] X fails at y. But then X fails at some 

z < y. Since < is transitive, z < x. But then []  X fails at x, since 1' fails at z. This 

contradicts our  assumption that [ ]X holds at x. The upshot is that []2 X must 

hold at x, as desired. 

( i f ) :  Suppose A2 holds in (X;  > ) ,  and that z < y, and y < x. We show that 

z ~ x .  

Let then v be some variable. Define e : V x X - * 2  so that e(v, w ) =  1 if[ 

w < x .  Then e(Vlv, x ) =  1. Since A2 holds in (X;  >},  we have e([]2v, x ) =  1. 

Whence we have e(V-lv, y ) =  1 and then e ( v , z ) =  1. So z < x .  

3.5. The binary relation < on X is well-founded iff every non-empty subset 

Y of X contains a < -minimal element,  y (i.e., for no z in Y is z < y). 

THEOREM. Let (X;  > )  be a frame. Then the following are equivalent: 
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1) All the theorems of G are valid in iX;  > ). 

2) < is transitive and well-[ounded. 

PROOF. (1) ~ (2): Suppose that all the theorems of G are valid in the frame 

iX;  > ) .  We know by Lemma  3.4 that < is transitive. We must show that it is 

well-founded. Suppose to the contrary that Y is a non-empty subset of X with 

no < -min ima l  element.  We shall derive a contradiction. 

Let v be a propositional variable. Define e : V x X---~ 2 so that e(v, x ) =  0 iff 

x E Y. It will suffice to show that []([]v---~ v).---~.[]v is false at any point of Ii. 

(Since A3 is valid in the frame iX;  > ) ,  this will yield a contradiction.) 

Since Y has no < -minimal element,  [] v is false at each point of Y. It follows 

first that []  v ~ v holds at each point in X. (The hypothesis is false at points in Y, 

and the conclusion is true at points not in Y.) But then I-l(f--I v ~ v) is true at all 

points in X, so [ ( ~ v ~ v ) ~ v  is false at each y in Y. 

(2) ~ (1): By L e m m a  3.4 and the remarks  that precede it, the set of formulae 

valid in iX;  > ) contains the instances of A0, A1 and A2 and is closed under  R1 

and R2. It suffices to verify that the instances of A3 are valid in iX;  > ) .  

Suppose that e : V • X ~ 2 gives a model, that x ~ X, X is a formula,  and that 

O(Dx-* x) .~ .~x 

is false at x. We derive a contradiction. 

We must have E](DX~X)  true at x and [ ]X false at x. Let 

Y = { y E X : y < x  and X is false a ty} .  

Y is non-empty since [ ]X is false at x. Let y be < -min ima l  in Y. 

If z < y, then by transitivity of < ,  z < x. Since y is < -minimal in Y. z ~ Y. So 

X must hold at z. Since z < y was arbitrary, FIX holds at y. 

Since []  ( [ ]  X ~ X) holds at x, []  X ~ X holds at y. Whence, since []  X holds at 

y, we have X holds at y. But this contradicts y E Y. 

3.6. We define for each modal formula, X, a number  l(x) as follows: 

1) If v is a variable, l(v)= 1; 

2) l(_l.)= 1; 

3) I(X---~ ~b)= t(X)+ l(~b)+ 1; 

4) t([]X)= l(x)+ 1. 
Note that any reasonable encoding of X as a binary string will have length at 

least l (x ). 
We define the notion of subformula in an evident way; we arrange the 
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definition so that X is a subformula of itself. One checks easily by induction on 

l (x)  that X has at most l (x )  subformulae.  

The following theorem is the main result of w 

THEOREM. Let X be a modal formula which is not a theorem of G. Then there is 

a model (X;  > , e )  and an x o E X  such that: 

1) e(X, Xo) = O. 

2) < is transitive and well-founded. (So by Theorem 3.5, G is valid in 

<x; > >.) 

3) I f x E X ,  x<~xo. 

4) X is finite. In fact X has at most 2 "~ elements. 

3.7. Before commencing the proof of Theorem 3.6, we reap some corollaries. 

Our  first corollary is a completeness theorem for G. 

COROLLARY 1. G ~-X i f fx is valid in every (finite) frame (X;  > ) in which < 

is transitive and well-founded. 

COROLLARY 2. The set of theorems of G is recursive. 

PROOF. We prove, in fact, that if the formulae of M are encoded as binary 

strings one can check for G- theo remhood  in at most 22`" Turing machine steps, 

where n is the length of the encoding of X. (Here c is some constant independent  

of x.) 
By (4) of Theorem 3.6 it is enough to look at frames of size at most 2 n. It is easy 

to see that there are at most 22~ such frames. 

All that matters about the function e : V x X ~ 2 is what it does on pairs (v, x) 

with v occurring in X. There  are at most n such v's,  so each frame underlies at 

most 222- essentially different models. To check if X holds at each point of a 

model of size 2" takes 2 c'" steps for some c' .  Putting these estimates together,  we 

can test for validity of 1" in all models of size at most 2" in at most 22`" steps. 

REMARK. By exploiting the ideas behind the proof of Theorem 3.6, we can 

construct an algorithm for G- theo remhood  that takes at most 2 ~n steps (for some 

suitable constant c). 

3.8. We now commence  the proof of Theorem 3.6. We fix a formula X that is 

not a theorem of G. Let E be the set of subformulae of X- Let A be the subset of 

E consisting of all propositional variables or formulae with principal connective 

[] that occur in X. (We think of A as the "a tomic  formulae"  of E.) 

Each map s : A ~ 2 has a canonical prolongation (which we again denote  by 
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s) to a map s : E - - > 2 .  This is because each formula in E is a Boolean 

combination of formulae in A. 

To each truth assignment s :A---*2 we associate a modal formula q~(s) as 

follows. Say A = {l~l,"" ", I~r} then qb(s) = to~ A ' ' '  ^ to;where 4'~ = to~ if s(to~) = 1 

and to'i =--nto~ if s(to~)= 0. (Intuitively, qb(s) expresses that s is correct.) Note 

that if s ( x  ) = 1, ~ ( s  )---> X is a tautology; if s(x  ) = O, alp(s)--, --n X is a tautology. 

Let X1 be {s: s : A ---> 2 and --nqb(s) is not a theorem of G}. Note that for some 

s ~ X1, s ( x )  = 0. (Otherwise, for each s E XI, q~(s)---> 1' is a tautology. But then 

g would be a theorem of G.) Fix so E X~ such that so(x)= O. 

3.9. If s E X,, define the rank of s to be the number of formulae in A of the 

form [] tO such that s([]  tO) = 0. 

We now define a binary relation <1 on X1. Say that s< l  s' iff: 

1) rank ( s ) < r a n k ( s ' ) ;  

2) If s'([] tO)= 1, then s(I--1 tO)= 1 and s(tO)= 1. 

It is readily checked that <1 is well-founded and transitive. 

Let X be {s E X l : s ~ l s o } .  Define a relation < on X by putting s < s' iff 

s<~ s'  (for s, s' ~ X). Evidently, < is transitive and well-founded. Since A has at 

most l (x)  elements, X has at most 2 "x~ elements. Clearly (3) of Theorem 3.6 

holds (with So in the role of xo). It remains to prove that e(g, so)= O. 

3.10. LEMr~A. Let  s E X. Let  [] tO E A such t~at s ([] tO) = O. Then there is 

an s' E X with s' < s and s'(tO) = O. 

PROOF. Let tO1,'", tOk be those formulae in E such that I:]tO~ E A and 

s([-1 tOl)= 1. We shall prove that there is a truth assignment s ' E  X1 such that 

a) s'(tO,) = s ' ( D  4,,) = 1; 

b)  s'(tO) = 0, s '(rq tO) = 1. 
Note that since s([]  tO)= 0, (a) and (b) imply that rank ( s ' ) <  rank (s). Whence, 

by (a), s '<ls .  Hence, s'<~so. So s ' ~ X ,  and the lemma will follow. 

Our plan now is to assume there is no s' E X1 satisfying (a) and (b), and show 

that ~b(s) is refutable in G, contradicting s E X1. 

Let 0 = tO1 ̂ " "  ^ tOk. By Lemma 2.4 (2), G proves [] 0 ~ ([] tO1 ̂ " "  ^ [] tOk). 

Thus if for every s' satisfying (a) and (b), q~(s) is refutable in G, 

i) G F [ ] O  ^O.--->. ([]tO-->O). 

By Lemma 2.4 (1), 

ii) G~[](DO ^ O).--,. E](~tO---,tO). 
By A3, 

iii) G F ~ (E3 O --* ~,0)--* []  to. 
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By A2 and L e m m a  2.4 (2), 

iv) GF[~O--->[3(O0 ^O). 

By (ii), (iii), and (iv), 

v) G ~ - D O ~ [ 3 t k .  

But (v) entails that ~ ( s )  is refutable in G, contradicting s E Xa. 

3.11. We now define e : V x  X--*2.  If v ~ E, put e (v , x )  = x(v) .  Otherwise,  

put e ( v , x ) =  1. 

LEMMA. Let ~ E E, and x E X. Then e(~b,x) = x(tp). 

PROOF. We proceed by induction on l (x) .  (It is crucial for the proof that all 

subformulae of ~b lie in E if ~b E E.) The case when ~b is a variable is true by the 

definition of e, and the cases when ~b = Z or ~b has principal connective --~ are 

evident. Suppose now that ~ is [] 0. We consider two subcases. 

Case 1. x ( ~b ) = 1. 

We have to show that if y < x then e(0, y) = 1. But since y < x, y(O) = 1. And 

by inductive hypothesis, e(0, y ) =  y(0).  

Case 2. x ( ~ ) = O. 

We must prove the existence of a y < x with e(0, y)  = 0. We apply Lemma  

3.10 getting a y < x such that y ( 0 ) =  0. But by inductive hypothesis, e(0, y ) =  

y(0). 
3.12. The fact that e(x, So)= 0 is now immediate  from L e m m a  3.11 since 

so(x) = 0. Theorem 3.6 is proved. 

From now on, if we use the symbol < for a binary relation, it is understood 

that < is transitive and well-founded. 

Note that "x  < x "  is always false. (Otherwise, {x} would have no < - l ea s t  

member . )  

Finally, (3) of Theorem 3.6 says that Xo is the topmost  m e m b e r  of X. It is worth 

remarking that there is at most one topmost  member  of X. For if x~ is another  

such, we have Xo < xl and xl < Xo. Whence Xo < Xo contradicting our previous 

remark.  

w Imbedding Kripke models in P 

4.1. Our  goal in this section is to prove that every P-valid formula is a 

theorem of G. The main technical lemma, whose s tatement  follows in a moment ,  

may be viewed, roughly speaking, as imbedding a finite frame in which G is valid 

"'into Peano ari thmetic".  



296 R.M. SOLOVAY Israel J. Math. 

We shall be considering the following situation. < is a transitive well-founded 

relation on {1, . . . ,  n}. If 1 < j  =< n, then j < 1. 

Recall that we are assuming P is formalized so that we can create terms with a 

description operator.  

LEMMA. There is a term l o f  P such that: 

1) P~-O<=l<n. 

2) In the standard model  o f  P, I = O. 

3) I f  0 < i < n, " P  + "l = i ' "  is consistent. 

For 1 <= i <= n, let St = {] : j < i}. Let  So = {1,- . . ,  n}. 

4) Let  0 <= i < n. Let  j E St. Then 

P ~- I f  l = i, then " P  + '1 = j ' "  is consistent. 

5) Let  O< i < n. Le t  j Z St. Then 

P ~- I f  l = i, then P F- " l f j ". 

4.2. Our proof of Lemma 4.1 will be based on the following sort of 

construction. We will define a primitive recursive function h :to--> {0,.-- ,  n}. 

We will have h(O)=O. Moreover,  if h ( m ) = i ,  then either h ( m + l ) = i  or 

h ( m  + I ) ~ S , .  Since < is well-founded, h is eventually constant. We let 1 

denote the eventual value of h. (If l im , ,~  h (m) does not exist, we set l = n + 1.) 

Our definition of h will be in terms of a G6del number e for h. The apparent 

circularity is handled, using the recursion theorem, in the usual way. (Cf. [3, 

theorem XXVII, w p. 352].) 

4.3. We now give the formal definition of h. Let e be a G6del number for h. 

Let l be a term which defines the following number: 1) If e is the G6del number  

of a recursive function, h say, and l i m m ~ h ( m )  exists, then l is this limit. 

Otherwise, l = n + 1. 

The usual G6del  numbering of proofs of Peano arithmetic has the property 

(which we will use subsequently) that each theorem has infinitely many proofs, 

but each proof is the proof of exactly one theorem. 

Let h (0) = 0. If h (m) = i, we put h (m + 1) = i unless for some j E S~, m is the 

G6del number of a proof in P of I # j .  In that case set h ( m  + 1)=] .  This 

completes the definition of h. 

4.4. The following arguments about the construction can, unless otherwise 

noted, be formalized in P:  

a) h ( m )  is defined for all values of m and is _-< .n. 

b) If h ( m ) = j ,  then for all m ' > m ,  h ( m ' ) E { j } t _ ) S  i. 

This is proved by induction on m '  using the transitivity of < .  
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c) The re  is an m and a j such that  for  all m ' - >  m, h ( m ' )  = j. 

The  following p roof  of  (c) is easily formal ized  in P. Let  F(i) = cardinal i ty  of Si. 

Then  if j E S,, F(j)  < F(i). For  some  m, F(h (m) )  takes  on the m i n i m u m  value  of 

F o h. But  then for  all m'>= m, we must ,  by (b), have  h ( m ' ) =  h (m) .  

So l denotes  the eventua l  value of h (m) ,  for  m sufficiently large, p rov ided  by 

(c). Part  (1) of L e m m a  4.1 is now clear. 

d) If l = i, and j ~ S,, then P + " I  = j "  is consistent .  

We  suppose  that  (d) is false and  der ive  a contradict ion.  Pick m so that  for  all 

m ' =  m, h ( m ' )  = i. If  (d) is false, P F l ~ . i .  Let  m ' =  > m be some  s tage at which 

l ~  i is proved.  By our  choice of m, h (m ' )=  h (m '+  1 ) =  i. On the o the r  hand,  

inspect ion of the definit ion of h shows that  if h ( m ' )  = i, h ( m '  + 1) = ]. But  j fi i, 

since j ~ S,, and we have  our  contradict ion.  By formal iz ing this a rgumen t  in P, 

we get (4) of L e m m a  4.1. 

e) If l = i, and j ~ { i }  U S,, then P proves  l ~  j. 

If l = i, then for  some  m, h ( m ) =  i. Since P proves  all t rue  E ~ sentences ,  P 

proves  h ( m ) =  i. By formaliz ing the p roof  of (b), P p roves  that  if h ( m ) =  i, 
l E {i} U S~. Finally, P p roves  j g  {i} U S,. (e) is now clear. 

f) If l = i, and i > 0 ,  then P p roves  l ~  i. 

Let  m be the least in teger  such that  h (m + 1) = i. By the definit ion of h, m is a 

p roof  of l ~  i. 

By formaliz ing the proofs  of (e) and (f) within P, we get (5) of L e m m a  4.1. 

4.5. The  following a rgumen t s  cannot  be  comple te ly  formal ized  in P. 

g) 1 = 0 .  

If l = i > 0, then by (f), P p roves  " l ~  i " .  But  all the t heo rems  of P hold in the 

s tandard  model .  Thus  to escape  contradict ion,  we must  have  l = 0. 

h) For  0_-< i _-< n, P + " I  = i "  is consistent .  

For  i -- 0, the s tandard  model ,  by (g), is a model  of  P + " t  = i " .  The  cases 

when i > 0 follow f rom (g) and (d). 

Since (g) and (h) are precisely (2) and (3) of L e m m a  4.1, the l e m m a  is now 

proved.  

4.6. The  following result is the main  t h e o r e m  of this paper .  

THEOREM. A modal formula X is P-valid iff X is a theorem of G. 

PROOF. By L e m m a  2.3 every t h e o r e m  of G is P-val id .  Le t  now X be a moda l  

fo rmula  which is not  a t h e o r e m  of G. W e  shall find an in te rpre ta t ion  of M in P 

such that  X* is not  a t h e o r e m  of P. W e  shall show in fact that  we can a r range  that  



298 R.M. SOLOVAY Israel J. Math. 

for each propositional variable v, v* is (provably equivalent to) a Boolean 

combination of E ~ sentences. 

4.7. We first apply Theorem 3.6 to X. We may clearly assume that X = 

(1 , . . . ,  n) for some n, and that x0 = 1. Thus Theorem 3.6 says that there is a 

model (X;  > ,  e) such that 

1) x = {1, . - . ,  n}; 

2) e 0 r  

3) F o r l < j < = n , ] < I ;  

4) < is transitive and well-founded. 

4.8. We now invoke Lemma 4.1 getting a term /. 

For the purposes of w it will be convenient to set e(v,O) = e(v, 1). 

We now define the interpretation we use to show that X is not P-valid. We set 

v *=  V { l = i : O < = i < = n  and e ( v , i ) = l } .  

Here  the right hand side is a finite disjunction. If the right hand side is the 

empty disjunction, put v* = "0 = 1". 

LEMMA. Let 0 be a modal  formula. Let  1 <= i <= n. Then 

1) I f  e(~b,i)= l, 

2) I f  e(~b,i)=O, 

P ~ l = i - - - ~ * .  

p ~ l = i --> --a ~b * . 

PROOF. The proof is by induction on l(~b). For v a variable, this is clear from 

the definition of v*. The cases when ~b = _1_ and when ~, has principal connective 

--~ are straighforward. 

Now suppose that t~ is []  0. We consider two cases: 

Case 1. e ([~ O, i ) = l. 

By (1) and (5) of Lemma 4.1, if i > 0 ,  

i) P l - I f  l = i ,  then P t - I E S ,  

Since e(/-q 0, i) = 1, e(O,]) = 1 for all j E S, Whence, by induction hypothesis, 

ii) e F l = j - - - > O * ,  q ~ S , ) .  

Whence, 

iii) P ~ - I E S , - - ~ O * .  

By (i) and (iii), 
iv) P~-l=i---~"P~-O*", 
i.e., P ~  I = i - ->(NO)  *. 
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Case 2. e ([] O, i ) = O. 

Then  for  some  j ~ S~, we have  e (0, j )  = 0. But  then by induct ion hypothesis ,  

i) P F l = j--> --a O * 

By L e m m a  4.1 (4), 

ii) P k l = i - - > C o n ( P + " l = j " ) .  

By (i) and (ii), 

iii) P F l = i - - > C o n ( P + - l O * ) ,  

i.e., P k  l = i-->-'l([~O)*. 

4.9. T h e  p roof  of T h e o r e m  4.6 is now immedia te .  Since e (X, 1) = 0, P I- l = 

1--->--a X*. By L e m m a  4.1 (3), P + " / =  1" is consistent .  A [ortiori, P +  --aX* is 

consistent ,  i.e., X* is not a t h e o r e m  of P. So X is not  P-val id .  

It  r emains  to see that  in our  construct ion,  each v* is p rovab ly  equiva len t  to a 

Boo lean  combina t ion  of Eo sentences .  It evident ly  suffices to see that  l = i is a 

Boo lean  combina t ion  of E ~ sentences .  But  l = i iff 1) for  some  m, h ( m )  = i and it 

is not the case that  2) for  some  m, h ( m ) E  S,. Since (1) and (2) are clearly E1 ~ 

sentences ,  our  claim follows. 

4.10. The  fol lowing ra ther  technical  result  will be  needed  in w W e  keep  the 

context  of w167 

LEMMA. Let X be a .formula. We suppose that [or each sub[ormula o[ X o[ the 

[orm []0, e(I-3 0----> 0, 1 ) =  1. Then i[ 4' is a sub[ormula o[ x: 

1) I[ e(4 ' , l )= 1, 

2) I[ e(4' , l )=O, 

P F I  = 0---~ 4'*.  

P F I  = 0--'> --a 4'*. 

PROOF. T h e  p roof  is by induct ion on 1(4'). T h e  case when  q' is a var iable ,  v, is 

clear  f rom our  definit ion of v*. (This is why we a r ranged  previously  that  

e(v,O) = e(v, 1).) 

As  usual,  the only p rob lemat ica l  case is when  4' has the fo rm []  0. 

Case 1. e(I--I 0, 1) = 1. 

If 1 < i =  < n, i E $1 so e(O,i)= 1. Also by the hypothes is  of the  l emma,  

e (0 ,1)  = 1. It  follows by L e m m a  4.8 and  our  induct ion hypothesis ,  that  if 

O<-i<=n, P F I  = i---> 0".  By L e m m a  4.1 (1), PkO<-_l<-<_n. W h e n c e  PFO*. So 

([] 0)* = B e w ( ' 0 * ' )  is a t rue  E ~ sentence.  Hence ,  P k ([3 0)*. A [ortiori, P k I = 

o---, o)*. 
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Case 2. e([]O, 1)=O. 

Then for some j with 1 < j <= n, e(O,j) = 0. By Lemma 4.8, P I- l = j --~ --1 0*. 

By Lemma 4.1 (4), P F l = O - - - ~ C o n ( P + ' l = j ' ) .  So PFI=O.---~.  

Con(P + -a O*), i.e., P F I = O-->--n(f~ O )*. 

w The case of truth 

5.1. We begin by introducing a new system of modal logic G' .  G '  will have 

two axiom schemata and one rule of inference: 

A4: All theorems of G. 

A5: I-q X ---> X. 
RI: If F X and F X -'-> tp, then F ~b. 

The main result of this section is: 

THEOREM. A formula X is to-valid iff X is a theorem of G'. 

5.2. Theorem 5.1 will follow easily from what we have already proved. 

Before showing this, we note the following corollary: 

COROLLARY 5.2. G' is not closed under R2. (Recall that R2 says: From l- X 

infer F [] X.) 

PROOF. We suppose that G '  is closed under R2 and derive a contradiction. 

By R2 and A5, G ' F /--] ([] _I_ --> _/_ ). By A3, G'F[]([]_I_---~_I_)---~/-]• By R1, 

G' F[~ • By Theorem 5.1, []  _1. is to-valid, i.e., P is inconsistent, which is absurd. 

5.3. LEMMA. Every theorem of G'  is to-valid. 

PROOF Clearly the set of to-valid formulae is closed under R1. By Lemma 

2.3, it contains all instances of A4. Since the theorems of P hold in the standard 

model of arithmetic, all instances of A5 are to-valid. The lemma follows: 

5.4. LEMMA. Let X be a modal formula Let EJ~lq,...,[~ ~, be all the 

subformulae of X with principal connective []. Then if 

(,~) [([]  g,,--, ~,) A ' ' '  A (D~,, --, ~,,)1---" x 

is not a theorem of G, then there is an interpretation of M in P such that X* is false 

in the standard model. 

PROOF. We apply Theorem 3.6 to (a).  We get a model (X;  > ,  e> such that 

(1) through (4) of w hold and, in addition, 

e ([] ~, ---~ $,, 1) = 1 (1_-< i_-< r). 
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By Lemma 4.10, 

P F l  = 0---* ~ X* 

By Lemma 4.1 (2), l = 0 is true. Whence X* is false, as desired. 

5.5. Theorem 5.1 follows readily. If (a )  is a theorem of G, X is a theorem of 

G'.  Thus if X is not a theorem of G', ;( is not w-valid. This completes the proof 

of Theorem 5.1. 

It is clear from Lemmas 5.3 and 5.4 that X is a theorem of G'  iff (ct) is a 

theorem of G. Since G is decidable, so is G'.  

w Other results 

6.1. In this section, we present some further results, without proofs. We first 

discuss what properties of P are needed in the proof of the main theorem. Then 

we present some results to the effect that there is no simple normal form for 

G-equivalence classes of modal formulae. Finally, we discuss other notions of 

"provability",  such as holding in all transitive models. It turns out that for some 

of these other  notions of provability, other  modal systems than G come into 

play. 

6.2. Our results about P-validity adapt without essential change to a theory 

T satisfying the following conditions: 

1) T is recursively axiomitizable; 

2) P is relatively interpretable in T;  

3) T is E~ 

(I.e., if X is a Eo 2 sentence of P, and X* is the sentence of T that is the 

interpretation of X, then if T ~- 9(*, then X is true.) Condition (3) follows from the 

more familiar condition that T is w-consistent. 

6.3. We 'de f ine  an equivalence relation on the set of modal formulae 

containing no propositional variable other than Vo by putting Xo-X1 iff 

G ~-Xo ~ XI. The set of equivalence classes forms a Boolean algebra, B1. 

B1 contains, as a subalgebra, the equivalence classes of formulae that contain 

no propositional variables. Call this subalgebra Bo. Then the results of Boolos 

imply the following facts about B0: 

1) The Stone space of all homomorphisms of Bo is countable, with exactly 

one non-isolated point. 

2) Every element of Bo is a Boolean combination of elements of the form 

[]r &. (Here [7' is the r-fold iterate of [7.) 
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Before stating the situation for B1, we define a sequence, H., of subalgebras of 

B1. Ho is the subalgebra generated by Vo. /-/.+1 is the subalgebra generated by 

elements of the form I--]'@ where @ E/4 . .  Evidently B1 is the union of the 

sequence /4. of subalgebras. 

We interpret the following results as saying that B, is much more complicated 

than B0. 

1") The Stone space of B~ has power 2 "~ 

2*) For no n is B~ = H.. 

(By (2) Bo---H,.) 

6.4. We now consider various notions of interpretation of M in ZFC 

(Zermelo-Frenkel  set theory including the axiom of choice). Our notions will 

differ in their treatment of F-I. 

a) The analog of the definition we used in defining P-validity is: (F-] X)* = X* 

is a theorem of ZFC. Equivalently, (F-] X)* = : X* holds in all models of ZFC. The 

remarks of w handle this case. 

b) The second notion we consider is obtained by taking (I-IX)* = :X* holds 

in all to-models of ZFC. Equivalently, (F-I X)* = : X* is provable in ZFC + to-rule. 

In order  to investigate this notion, we assume: ZFC has a countable transitive 

model. 

The appropriate modal logic is again the system G. In proving the analogue of 

Lemma 4.1 one uses the well-ordering of proofs in to-logic of order type to~ in 

place of the usual to ordering of proofs in first order logic. 

6.5. The next interpretation we consider is: (I--Ix)*=:X* holds in all 

transitive models of ZFC. The relevant assumption is: ZFC has an uncountable 

transitive model. 

Before stating our results, we review the facts on transitive models that 

underlie them. 

Let M be a transitive model of ZFC. Then the set of ordinals of M form an 

initial segment of the ordinals, say AM. (As usual, each ordinal is taken to be the 

set of all smaller ordinals.) 

Let X be a sentence of the language of set theory. We let A(X)= 

min{AM: M ~ Z F C  + X}. If Z F C +  X has no transitive models, A(X)= 0o. 

Let M be a transitive model of ZFC. Then M I = ' ' ' Z F C  + X' has a transitive 

model"  iff A(X)< AM. In that case, 

x (x)" = x(x). 

6.6. The set of modal formulae valid with respect to the notion and 
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interpretation presented in w is precisely the set of theorems of the following 

modal system H. 

H contains all the axiom schemata and rules of inference of G and in addition 

the following axiom schemata. 

A6. I--I(x--->O~). v .  I-I(~b---~OX). v .  I q ( O X , ~ O ~ ) .  

Our proof yields that H has the finite model property. Indeed a sufficient 

stock of frames to yield counter-models to all the non-theorems of H is obtained 

by considering finite sets X equipped with a map h of X onto some finite integer 

n. We put x l > x 2  iff h ( x O > h ( x ~ ) .  

A careful analysis of the proof of the finite model property yields a decision 

procedure for H that halts in at most 2 c"'~ steps (where n is the length of the 

formula being checked for H- theoremhood  and c is some suitable absolute 

constant). 

On can similarly discuss the class of interpretations where (I-1X)* is: For every 

inaccessible cardinal K, R (K) ~ X*. 

Here the relevant system is obtained by adding to H the schema: 

A7. ~ x ^ rq ( o x ,=> <> ~ ) . --~ . [ q  [ x ^ [-] ~ x . --> ~ ] . 

An adequate class of Kripke models is the set of finite linearly ordered sets. This 

can be proved in Z F C  + "There  are infinitely many inaccessible cardinals". 

Bibliographical remark 

Professors Smorynski and Magari have helped me in understanding in more 

detail the previous work done on the problems considered in this paper. The 

following remarks are my summary of their letters. 

Friedman's 35th problem has also been solved by van Bentham (a student of 

deJongh) in his doctoral dissertation, and by Professors Bernardi and Montagna, 
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