JOHN P. BURGESS

BASIC TENSE LOGIC

1 WHAT IS TENSE LOGIC?

We approach this question through an example:

(1) Smith: Have you heard? Jones is going to Albania!
Smythe: He won’t get in without an extra-special visa.
Has he remembered to apply for one?
Smith: Not yet, so far as I know.
Smythe:  Then he’ll have to do so soon.

In this bit of dialogue the argument, such as it is, turns on issues of temporal
order. In English, as in all Indo-European and many other languages, such
order is expressed in part through changes in verb-form, or tenses. How
should the logician treat such tensed arguments?

A solution that comes naturally to mathematical logicians, and that has
been forcefully advocated in [Quine, 1960], is to regiment ordinary tensed
language to make it fit the patterns of classical logic. Thus Equation 1
might be reduced to the quasi-English Equation 1 below, and thence to the
‘canonical notation’ of Equation 3:

(2) Jones/visits/Albania at some time later than the present.

At any time later than the present, if Jones/visits/Albania then, then
at some earlier time Jones/applies/for a visa.

At no time earlier than or equal to the present it is the case that
Jones/applies/for a visa.

Therefore, Jones/applies/for a visa at some time later than the present.

(3)  Ft(e<tAP(t)
Vi(c <t A P(t) = Ju(u < t A Q(u)))
-3t <cVi=c)AQ())
st (e <t AQ(D)).

Regimentation involves introducing quantification over instants ¢, u, ... of
time, plus symbols of the present instant ¢ and the earlier- later relation
<. Above all, it involves treating such a linguistic item as ‘Jones is visiting
Albania’ not as a complete sentence expressing a proposition and having a
truth-value, to be symbolised by a sentential variable p, q, ..., but rather as
a predicate expressing a property on instants, to be symbolised by a one-
place predicate variable P, (@, .... Regimentation has been called detensing
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since the verb in, say, ‘Jones/visits/Albania at time ¢’, written here in the
grammatical present tense, ought really to be regarded as tenseless; for it
states not a present fact but a timeless or ‘eternal’ property of the instant ¢.
Bracketing is one convention for indicating such tenselessness. The knack
for regimenting or detensing, for reducing something like Equation 1 to
something like Equation 3, is easily acquired. The analysis, however, cannot
stop there. For a tensed argument like that above must surely be regarded
as an enthymeme, having as unstated premises certain assumptions about
the structure of Time. Smith and Smythe, for instance, probably take it
for grated that of any two distinct instants, one is earlier than the other.
And if this assumption is formalised and added as an extra premise, then
Equation 3, invalid as it stands, becomes valid.

Of course, it is the job of the cosmologist, not the logician, to judge
whether such an assumption is physically or metaphysically correct. What
is the logician’s job is to formalise such assumptions, correct or not, in logical
symbolism. Fortunately, most assumptions people make about the structure
of Time go over readily into first- or, at worst, second-order formulas.

1.1 Postulates for Earlier-Later

(BO) Antisymmetry VaVy—-(z < y Ay < x)
(B1) Transitivity VaVyVz(z <y Ay <z - x < 2)
(B2) Comparability VaVy(ze < yVez=yVy < x)
(B3) (a) Maximum JaVy(ly <z Vy =)
(b) Minimum Vy(z <yVz=y)
(B4) (a) No Maximals  Vz3Iy(z < y)
(b) No Minimals  Vz3y(y < x)
(B5) Density VaVy(z <y = z(x < 2z A2 <y))
(B6) (a) Successors Vedy(z <y A—-Jz(z < 2 Az < y))
(b) Predecessors VeJy(ly <z A—-Jz(y < z Az < z))
(B7) Completeness YU ((FzU (z) A Jz-U (z)A
Vavy(U(x)A
AU (y) =z <y)) =
(Fz(u(z)A
AVy(z <y — =U(y)))V
Jz(-U (z)A
AYy(y <z — U(y))))
(B8) Wellfoundedness VU (I2U(z) — Jz(U(z) —
AVy(y <z — =U(y)))
(B9) (a) Upper Bounds VzVydz(z < zAy < 2)

For more on the development of the logic of time as a branch of applied

(b) Lower Bounds

VaVydz(z < x Az < y).

first- and second-order logic, see [van Benthem, 1978].
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The alternative to regimentation is the development of an autonomous
tense logic (also called temporal logic or chronological logic), first undertaken
in [Prior, 1957] (though several precursors are cited in [Prior, 1967]). Tense
logic takes seriously the idea that items like ‘Jones is visiting Albania’ are
already complete sentences expressing propositions and having truth-values,
and that they should therefore by symbolised by sentential variables p, g, . . ..
Of course, the truth-value of a sentence in the present tense may well differ
from that of the corresponding sentence in the past or future tense. Hence,
tense logic will need some way of symbolising the relations between sentences
that differ only in the tense of the main verb. At its simplest, tense logic
adds for this purpose to classical truth-functional sentential logic just two
one-place connectives: the future-tense or ‘will’ operator F' and the past-
tense or ‘was’ operator P. Thus, if p symbolises ‘Jones is visiting Albania’,
then F'p and Pp respectively symbolise something like ‘Jones is sooner or
later going to visit Albania’ and ‘Jones has at least once visited Albania’. In
reading tense-logical symbolism aloud. F' and P may be read respectively
as ‘it will be the case that’ and ‘it was the case that’. Then —F—, usually
abbreviated GG, and —P—, usually abbreviated H, may be read respectively
as ‘it is always going to be the case that’ and ‘it has always been the case
that’. Actually, for many purposes it is preferable to take G and H as
primitive, defining F' and P as -G— and —H- respectively. Armed with
this notation, the tense-logician will reduce Equation 1 above to the stylised
Equation 1.1 and then to the tense-logical Equation 5:

(4) Future-tense (Jones visits Albania)

Not future-tense (Jones visits Albania and not past-tense (Jones applies
for a visa)).

Not past-tense (Jones applies for a visa) and not Jones applies for a
visa.

Therefore, future-tense (Jones applies for a visa)

(5) Fp
~F(pA—Pq)
-PgA—q
. Fq.

Of course, we will want some axioms and rules for the new temporal op-
erators F, P, g, H. All the axiomatic systems considered in this survey will
share the same standard format.

1.2 Standard Format

We start from a stock of sentential variables pg,p2,p2, ..., usually writing
p for po and ¢ for p;. The (well-formed) formulas of tense logic are built
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up from the variables using negation (=), and conjunction (A), and the
strong future (G) and strong past (H) operators. The mirror image of
a formula is the result of replacing each occurrence of G by H and vice
versa. Disjunction (V), material conditional (—), material biconditional
(+), constant true (T), constant false (L), weak future (F'), and weak past
(P) can be introduced as abbreviations.

As azioms we take all substitution instances of truth-functional tautolo-
gies. In addition, each particular system will take as axioms all substitution
instances of some finite list of extra axioms, called the characteristic axioms
of the system. As rules of inference we take Modus Ponens (MP) plus the
specifically tense-logical:

Temporal Generalisation(TG): From a to infer Ga and Ha

The theses of a system are the formulas obtainable from its axioms by these
rules. A formula is consistent if its negation is not a thesis; a set of formulas
is consistent if the conjunction of any finite subset is. These notions are, of
course, relative to a given system.

The systems considered in this survey will have characteristic axioms
drawn from the following list:

1.3 Postulates for a Past-Present-Future

(A0) (a) Gp—4q) = (Gp—Gq) (b) H(p—q)— (Hp— Hq)
(¢c) p—GPp (d) p— HFp
(A1) (a) Gp— GGp (b) Hp— HHp
(A2) (a) PpAFq—F(pAFq)VF(pAqVF(FpAq)
(b) PpAPq— P(pAPq)VP(pAq)VP(PpAq)
(A3) (a) GLVFGL (b) HLVPHL
(A1) (a) Gp— Fp (b) Hp— Pp
(A5) (a) Fp— FFp (b) Pp— PPp
(A6) (a) pAHp— FHp (b) pAGp— PGp
(A7) (a) FpAFG-p— F(HFpAG-p)
(b) PpAPH-p— P(GPpA H-p)
(A8) H(Hp — p) — Hp
(A9) (a) FGp— GFp (b) PHp— HPp.

A few definitions are needed before we can state precisely the basic prob-
lem of tense logic, that of finding characteristic axioms that ‘correspond’ to
various assumptions about Time.

1.4 Formal Semantics

A frameis a nonempty set C' equipped with a binary relation R. A valuation
in a frame (X, R) is a function V assigning each variable p; a subset of X.
Intuitively, X can be thought of as representing the set of instants of time, R
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the earlier-later relation, V' the function telling us when each p; is the case.
We extend V to a function defined on all formulas, by abuse of notation
still called V', inductively as follows:

V(—a) = X-V(a)

Vianp) = Via)nV(p)

V(Ga) = {reX:Yye X(zRy -y € V(a))}
V(He) = {zeX:Vye X(yRx—yeV(a))}.

(Some writers prefer a different notion. Thus, what we have expressed as
x € V() may appear as ||a]|¥ = TRUE or as (X, R,V) E afz].) A formula
a is walid in a frame (X, R) if V(a) = X for every valuation V in (X, R),
and is satisfiable in (X, R) if V(o # @ for some valuation V in (X, R), or
equivalently if -« is not valid in (X, R). Further, « is valid over a class K
of frames if it is valid in every (X, R) € K, and is satisfiable over K if it is
satisfiable in some (X, R) € K, or equivalently if —« is not valid over . A
system L in standard format is sound for K if every thesis of L is valid over
IC, and a sound system L is complete for K if conversely every formula valid
over K is a thesis of L, or equivalently, if every formula consistent with L
is satisfiable over K. Any set (let us say, finite) ® of first- or second-order
axioms about the earlier-later relation < determines a class K(®) of frames,
the class of its models. The basic correspondence problem of tense logic is,
given ® to find characteristic axioms for a system L that will be sound and
complete for K(®). The next two sections of this survey will be devoted to
representing the solution to this problem for many important &.

1.5 Motivation

But first it may be well to ask, why bother? Several classes of motives for
developing an autonomous tense logic may be cited:

(a) Philosophical motives were behind much of the pioneering work of A.
N. Prior, to whom the following point seemed most important: whereas our
ordinary language is tensed, the language of physics is mathematical and so
untensed. Thus, there arise opportunities for confusions between different
‘terms of ideas’. Now working in tense logic, what we learn is precisely
how to avoid confusing the tensed and the tenseless, and how t clarify their
relations (e.g. we learn that essentially the same thought can be formulated
tenselessly as, ‘Of any two distinct instants, one /is/ earlier and the other
/is/ later’; and tensedly as, ‘Whatever is going to have been the case either
already has been or now is or is sometime going to be the case). Thus, the
study of tense logic can have at least a ‘therapeutic’ value. Later writers
have stressed other philosophical applications, and some of these are treated
elsewhere in this Handbook.
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(b) Ezegetical applications again interested Prior (see his [Prior, 1967, Chap-
ter 7]). Much was written about the logic of time (especially about fu-
ture contingents) by such ancient writers as Aristotle and Diodoros Kronos
(whose works are unfortunately lost) and by such mediaeval ones as William
of Ockham or Peter Auriole. It is tempting to try to bring to bear insights
from modern logic to the interpretation of their thought. But to pepper
the text of an Aristotle or an Ockham with such regimenters’ phrases as ‘at
time ¢’ is an almost certain guarantee of misunderstanding. For these earlier
writers thought of such an item as ‘Socrates is running’ as being already
complete as it stands, not as requiring supplementation before it could ex-
press a proposition or have a truth-value. Their standpoint, in other words,
was like that of modern tense logic, whose notions and notations are likely
to be of most use in interpreting their work, if any modern developments
are.

(¢) Linguistic motivations are behind much recent work in tense logic. A
certain amount of controversy surrounds the application of tense logic to
natural language. See, e.g. van Benthem [1978; 1981] for a critic’s views.
To avoid pointless disputes it should be emphasised from the beginning
that tense logic does not attempt the faithful replication of every feature of
the deep semantic structure (and still less of the surface syntax) of English
or any other language; rather, it provides an idealised model giving the
sympathetic linguist food for thought. an example: in tense logic, P and F'
can be iterated indefinitely to form, e.g. PPPFp or FPF Pp. In English,
there are four types of verbal modifications indicating temporal reference,
each applicable at most once to the main verb of a sentence: Progressive (be
+ ing), Perfect (have + en), Past (+ ed), and Modal auxiliaries (including
will, would). Tense logic, by allowing unlimited iteration of its operators,
departs from English, to be sure. But by doing so, it enables us to raise the
question of whether the multiple compounds formable by such iteration are
really all distinct in meaning; and a theorem of tense logic (see Section 3.5
below) tells us that on reasonable assumptions they are not, e.g. PPPF'p
and F'PF Pp both collapse to PF'p (which is equivalent to PPp). and this
may suggest why English does not need to allow unlimited iteration of its
temporal verb modifications.

(d) Computer Science: Both tense logic itself and, even more so, the closely
related so-called dynamic logic have recently been the objects of much in-
vestigation by theorists interested in program verification. temporal opera-
tors have been used to express such properties of programs as termination,
correctness, safety, deadlock freedom, clean behaviour, data integrity, acces-
sibility, responsiveness, and fair scheduling. These studies are mainly con-
cerned only with future temporal operators, and so fall technically within
the province of modal logic. See Harel et al.’s chapter on dynamic logic in
Volume 4 of this Handbook, Pratt [1980] among other items in our bibliog-
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raphy.

(e) Mathematics: Some taste of the purely mathematical interest of tense
logic will, it is hoped, be apparent from the survey to follow. Moreover,
tense logic is not an isolated subject within logic, but rather has important
links with modal logic, intuitionistic logic, and (monadic) second-order logic.
Thus, the motives for investigating tense logic are many and varied.

2 FIRST STEPS IN TENSE LOGIC

Let Lo be the system in standard format with characteristic axioms (A0Qa,
b, ¢, d). Let Ko be the class of all frames. We will show that Ly is (sound
and) complete for Ly, and thus deserves the title of minimal tense logic.
The method of proof will be applied to other systems in the next section.
Throughout this section, thesishood and consistency are understood relative
to Lo, validity and satisfiability relative to KCo.

THEOREM 1 (Soundness Theorem). Lg is sound for K.

Proof. We must show that any thesis (of Lo) is valid (over Kg). for this
it suffices to show that each axiom is valid, and that each rule preserves
validity. the verification that tautologies are valid, and that substitution
and MP preserves validity is a bit tedious, but entirely routine.

To check that (AOa) is valid, we must show that for all relevant X, R, V'
and z, if x € V(G(p — ¢0) and z € V(Gp), then = € V(Gq). Well,
the hypotheses here mean, first that whenever xRy and y € V(p), then
y € V(q); and second that whenever xRy, then y € V(p). The desired
conclusion is that whenever z Ry, then y € V(q); which follows immediately.
Intuitively, (AOa) says that if ¢ is going to be the case whenever p is, and p
is always going to be the case, then ¢ is always going to be the case. The
treatment of (AOb) is similar.

To check that (AOc) is valid, we must show that for all relevant X, R, V|
and z, if z € V(p), then x € V(GPp). Well, the desired conclusion here is
that for every y with xRy there is a z with zRy and z € V(p). It suffices to
take z = z. Intuitively, (AOc) says that whatever is now the case is always
going to have been the case. The treatment of (A0d) is similar.

To check that TG preserves validity, we must show that if for all relevant
X,R,V, and z we have x € V(a), then for all relevant X, R,V, and x we
have x € V(Ha) and =z € V(Ga), in other words, that whenever yRx we
have y € V(«) and whenever xRy we have y € V(). But this is immediate.
Intuitively, TG says that if something is now the case for logical reasons
alone, then for logical reasons alone it always has been and is always going
to be the case: logical truth is eternal. |

In future, verifications of soundness will be left as exercises for the reader.
Our proof of the completeness of Lg for Ky will use the method of maximal
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consistent sets, first developed for first-order logic by L. Henkin, system-
atically applied to tense logic by E. J. Lemmon and D. Scott (in notes
eventually published as [Lemmon and Scott, 1977]), and refined [Gabbay,
1975).

The completeness of Lg for g is due to Lemmon. We need a number of
preliminaries.

THEOREM 2 (Derived rules). The following rules of inference preserve
thesishood:

1. from ai,as,...,ay, to infer any truth- functional consequence 3
2. from a — B to infer Gaa — G and Ho — Hf
3. from a <> B and 0(a/p) to infer 6(5/p)

4. from « to infer its mirror image.

Proof.

1. To say that § is a truth-functional consequence of ay, aa, ..., a, is to
say that (a1 AasA. . .Aay, — ) or equivalently oy — (a2 — (... (an —
B)...)) is an instance of a tautology, and hence is an axiom. We then
apply MP.

2. From o — (3 we first obtain G(a — ) by TG, and then Ga — Gf
by AOa and MP. Similarly for H.

3. Here (a/p) denotes substitution of « for the variable p. It suffices to
prove that if « — § and § — a are theses, then so are §(a/p) —
6(8/p) and 0(8/p) — 6(a/p). This is proved by induction on the
complexity of 8, using part (2) for the cases # = Gy and § = Hy. In
particular, part (3) allows us to insert and remove double negations
freely. We write a & (3 to indicate that a <+ 3 is a thesis.

4. This follows from the fact that the tense-logical axioms of Ly come in
mirror-image pairs, (AOa, b) and (AOc, d). Unlike parts (1)—(3), part
(4) will not necessarily hold for every extension of L. |

THEOREM 3 (Theses). Items (a)-(h) below are theses of Lg.

Proof. We present a deduction, labelling some of the lines as theses for
future reference:
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(1) Glp—q9 — G(—qg— —p) from a tautology by 1.2b
(2)  G(mg = —p) = (G-g = G-p) (AOa)
(a) 3) Glp—q) — (Fp— Fq) from 1,2 by 1.2a
4) Gp—-G@—=pAq) from a tautology by 1.2b
(5) Glg—=pAqg) = (Fg—F(pAg) 3
(b) (6) GpAFq— F(pAq) from 4, 5 by 1.2a
() p—GPp (AOc)
(8 GPpAFq— F(PpAq) 6
(¢c)(9) pAFq— F(PpAq) from 7, 8 by 1.2a
(10) GpAg) — Gp
GlpAq) = Gq from tautologies by 1.2b
(11) Gl@—pAg) = (Gg—GpAg) (Ala)
(d) (12) GpAGq<+ G(pAq) 12
(14) G-pAG—-qg— G-(pVq) from 13 by 1.3¢c
(e) (15) FpVFq+ F(pVyq) from 14 by 1.2a
(16) Gp—G(pVq)
Gqg—G(pVyq) from tautologies by 1.2b
() A7) GpVvGq— G(pVyq) from 16 by 1.2a
(18) G-qV G—-q— G(—-pV —q) 17
(19) G-pVG—-q— G-(pAq) from 18 by 1.2¢
(g) (200 F(pAgq— FpAFq from 19 by 1.2a
(21) -p—> HF-p (A0d)
(22) -p— H-Gp from 21 by 1.2¢
(h) (23) PGp—p from 22 by 1.2a
Also the mirror images of 1.3a~h are theses by 1.2d. |

We assume familiarity with the following;:

LEMMA 4 (Lindenbaum’s Lemma). Any consistent set of formulas can be
extended to a maximal consistent set.

LEMMA 5. Let Q) be a mazimal consistent set of formulas. For all formulas
we have:

1. Ifoaq,...,an € Aand oy A ... \Nay, — (3 is a thesis, then 8 € A.
2. ~acAiffag A
3 (anp)eAiffac Aand € A

4. (avpB)eAiffa € Aorpe A

They will be used tacitly below.

Intuitively, a maximal consistent set—henceforth abbreviated MCS—
represents a full description of a possible state of affairs. For MCSs A, B we
say that A is potentially followed by B, and write A—3 B, if the conditions
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of Lemma 6 below are met. Intuitively, this means that a situation of the
sort described by A could be followed by one of the sort described by B.

LEMMA 6. For any MCSs A, B, the following are equivalent:
1. whenever a € A, we have Pa € B,
2. whenever 8 € B, we have F3 € A,
3. whenever Gy € A, we have v € B,
4. whenever HY € B, we have § € A.

Proof. To show (1) implies (3): assume(1) and let Gy € A. Then PGy €
B, so by Thesis 3(h) we have v € B as required by (3).

To show (3) implies (2): assume (3) and let 8 € B. then -8 ¢ B, so
G- ¢ A, and F3 = -G—p € A as required by (2).

Similarly (2) implies (4) and (4) implies (1). ]

LEMMA 7. Let C be an MCS, v any formula:
1. if Fy € C, then there exists an MCS B with C—3 B and v € B,
2. if Py € C, then there exists an MCS A with A—3C and v € A.

Proof. We treat (1): it suffices (by the criterion of Lemma 6(a)) to obtain
an MCS B containing By = {Pa : a € C} U {v}. For this it suffices (by
Lindenbaum’s Lemma) to show that By is consistent. For this it suffices
(by the closure of C under conjunction plus the mirror image of Theorem
3(g)) to show that for any o € C, Pa A+ is consistent. For this it suffices
(since TG guarantees that —F¢ is a thesis whenever -4 is) to show that
F(Pa A7) is consistent. And for this it suffices to show that F'(Pa A )
belongs to C—as it must by 3(c). |

DEFINITION 8. A chronicle on a frame (X, R) is a function T' assigning
each z € X an MCS T'(z). Intuitively, if X is thought of as representing
the set of instants, and R the earlier-later relation, T should be thought
of as providing a complete description of what goes on at each instant. T
is coherent if we have T(x)—3T(y) whenever xRy. T is prophetic (resp.
historic) if it is coherent and satisfies the first (resp. second) condition
below:

1. whenever Fy € T(x) there is a y with zRy and v € T(y),
2. whenever Py € T)(x) there is a y with yRx and v € T'(y).

T is perfect if it is both prophetic and historic. Note that T is coherent iff
it satisfies the two following conditions:
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3. whenever v € T'(z) and xRy, then v € T(y),

4. whenever Hy € T'(z), and y Rz, then v € T(y).

If V is a valuation in (X, R), the induced chronicle Ty is defined by Ty (x) =
{v:2 € V(y};Tv is always perfect. If T' is a perfect chronicle on (X, R),
the induced valuation V is defined by Vp(p;) = {z : p; € T(x)}. We have:

LEMMA 9 (Chronicle Lemma). Let T be a perfect chronicle on a frame
(X, R). If V =V is the valuation induced by T, then T = Ty the chronicle
induced by V. In other words, for all formulas v we have:

(+) V(y) ={z:yeT(x)}
In particular, any member of any T (z) is satisfiable in (X, R).

Proof. (+) is proved by induction on the complexity of 7. As a sample,
we treat the induction step for G: assume (+4) for v, to prove it for G:

On the one hand, if Gy € T(z), then by Definition 8(3), whenever xRy
we have v € T(y) and by induction hypothesis y € V(y). This shows
z € V(Gy).

On the other hand, if Gy ¢ T(x), then F—y ~ -Gy € T(x), so by
Definition 8(1) for some y with xRy we have -y € T'(y) and v ¢ T(y),
whence by induction hypothesis, y € V(). This shows z € V(G7). |

To prove the completeness of Lg for Ky we must show that every consis-
tent formula 7 is satisfiable. Now Lemma 9 suggests an obvious strategy
for proving v satisfiable, namely to construct a perfect chronicle 7" on some
frame (X, R) containing an x¢ with v9 € T'(z9). We will construct X, R,
and T piecemeal.

DEFINITION 10. Fix a denumerably infinite set W. Let M be the set of
all triples (X, R,T) such that :

1. X is a nonempty finite subset of W,
2. R is an antisymmetric binary relation on X,
3. T is a coherent chronicle on (X, R).

For p = (X,R,T) and ¢/ = (X', R",T') in M we say u' extends p if (when
relations and functions are identified with sets f ordered pairs) we have:

. Xcx'
2. R=RN(X xX)
3. TCT.
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A conditional requirement of form 8(1) or (2) will be called unborn for
u=(X,R,T) € M if its antecedent is not fulfilled; that is, if z ¢ X or if
z € X but Fy or Py a the case may be does not belong to T'(z). It will
be called alive for pu if its antecedent is fulfilled but its consequent is not;
in other words, there is no y € X with Ry or yRz as the case may be and
v € T(y). It will be called dead for p if its consequent is fulfilled.

Perhaps no member of M is perfect; but any imperfect member of M can
be improved:

LEMMA 11 (Killing Lemma). Let p = (X, R,T) € M. For any requirement
of form 8(1) or (2) which is alive for p, there exists an extension u' =
(X',R',T") € M of p for which that requirement is dead.

Proof. We treat a requirement of form 8(1). If z € X and Fy € T'(x), by
7(1) there is an MCS B with T'(z) =3 B and v € B. It therefore suffices to
fix y € W — X and set

1. X' =XU{y}

2. R"=RU{(z,y)}

3. T"=TU{(y,B)}. ]
THEOREM 12 (Completeness Theorem). Lg is complete for K.

Proof. Given a consistent formula -y, we wish to construct a frame (X, R)
and a perfect chronicle T" on it, with v € t(z¢) for some zg. To this end we
fix an enumeration zg, 1, Z2,... of W, and an enumeration ~g,vy1,7a, . .. of
all formulas. To the requirement of form 8(1) (resp. 8(2)) for x = x; and
v = v; we assign the code number 2'5°77 (vesp. 3'5°77). Fix an MCS Cp
with v € Cp, and let Mo = (X(),R(),To) where Xy = {wo},RO = &, and
To = {(x0,Co)}. If py, is defined, consider the requirement, which among
all those which are alive for p,, has the least code number. Let u,y1 be
an extension of p, for which that requirement is dead, as provided by the
Killing Lemma. Let (X, R,T) be the union of the u, = (X,,, Rn, Ty ); more
precisely, let X be the union of the X,,, R of the R,,, and T of the Tj,. It is
readily verified that T is a perfect chronicle on (X, R), as required. |

The observant reader may be wondering why in Definition 10(2) the re-
lation R was required to be antisymmetric. the reason was to enable us to
make the following remark: our proof actually shows that every thesis of Ly
is valid over the class Ky of all frames, and that every formula consistent
with Lo is satisfiable over the class K, of antisymmetric frames. Thus, Ky
and Kyt give rise to the same tense logic; or to put the matter differently,
there is no characteristic axiom for tense logic which ‘corresponds’ to the as-
sumption that the earlier-later relation on instants of time is antisymmetric.
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In this connection a remark is in order: suppose we let X be the set
of all MCSs, R the relation —3,V the valuation V(p;) = {z : p; € z}.
Then using Lemmas 6 and 7 it can be checked that V(vy) = {& : v €
x} for all v. In this way we get a quick proof of the completeness of Lg
for Ky. However, this (X, R) is not antisymmetric. Two MCSs A and B
may be clustered in the sense that A—3 B and B—3 A. There is a trick,
known as ‘bulldozing’, though, for converting nonantisymmetric frames to
antisymmetric ones, which can be used here to give an alternative proof
of the completeness of Lg for Kuni. See Bull and Segerberg’s chapter in
Volume 3 of this Handbook and [Segerberg, 1970].

3 A QUICK TRIP THROUGH TENSE LOGIC

The material to be presented in this section was developed piecemeal in
the late 1960s. In addition to persons already mentioned, R. Bull, N. Coc-
chiarella and S. Kripke should be cited as important contributors to this
development. Since little was published at the time, it is now hard to assign
credits.

3.1 Partial Orders

Let Ly be the extension for Lo obtained by adding (Ala) as an extra axiom.
Let K1 be the class of partial orders, that is, of antisymmetric, transitive
frames. We claim L; is (sound and) complete for K. Leaving the verifica-
tion of soundness as an exercise for the reader, we sketch the modifications
in the work of the preceding section needed to establish completeness.

First of all, we must now understand the notions of thesishood and con-
sistency and, hence, of MCS and chronicle, as relative to Ly. Next, we must
revise clause 10(2) in the definition of M to read:

21. R is a partial order on X.

This necessitates a revision in clause 11(2) in the proof of the Killing Lemma.
Namely, in order to guarantee that R’ will be a partial order on X', that
clause must now read:

2. R =RU{(z,y)} U{(v,y) : vRz}.

But now it must be checked that T', as defined by clause 11(3), remains a
coherent chronicle under the revised definition of R'. Namely, it must be
checked that if vRz, then T'(v)—3B. To show this (and so complete the
proof) the following suffices:

LEMMA Let A,C,B be MCSs. If A3C and C—3 B, then A3 B.
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Proof. We use criterion 6(3) for —3: assume G~y € A, to prove v € B.
Well, by the new axiom (Ala) we have GGy € A. Then since A—=3C, we
have Gy € C, and since C —3 B, we have v € B. [ |

It is worth remarking that the mirror image (Alb) of (Ala) is equally
valid over partial orders, and must thus by the completeness theorem be a
thesis of Ly. To find a deduction of it is a nontrivial exercise.

3.2 Total Orders

Let Ly be the extension of L; obtained by adding (A2a, b) as extra axioms.
Let Iy be the class of total orders, or frames satisfying antisymmetry, tran-
sitivity, and comparability. Leaving the verification of soundness to the
reader, we sketch the modifications in the work of Section 3.1 above, be-
yond simply understanding thesishood and related notions as relative to Lo,
needed to show Ly complete for ICs.

To begin with, we must revise clause 10(2) in the definition of M to read:

25. R is a partial order on X.

This necessitates revisions in the proof of the Killing Lemma, for which the
following will be useful:

LEMMA Let A,B,C be MCSs. If A—3B and A—3C, then either B = C
or B3C or C—3B.

Proof. Suppose for contradiction that the two hypotheses hold but none of
the three alternatives in the conclusion holds. Using criterion 6(2) for —3,
we see that there must exist a yo € C' with Fyg € b (else B—3C') and a fy €
B with F3y ¢ C (else C =3 B). Also there must exist a 6 with § € B,0 & C
(else B=C). Let 8 = o A-Fy Ad € B,y =79%A-FB A-d € C. We
have F\3 € A (since A—3 B) and F'y € A (since A—3C). hence, by A2a, one
of F(BAF~),F(FBA~),F(3Av) must belong to A. But this is impossible
since all three are easily seen (using 3(7)) to be inconsistent. [ ]

Turning now to the Killing Lemma, consider a requirement of form 8(1)
which is alive for a certain p = (X,R,T) € M. We claim there is an
extension p' = (X', R',T") for which it is dead. This is proved by induction
on the number n of successors which x has in (X, R). We fix an MCS B
with T'(z) 3B and v € B. If n = 0, it suffices to define p’ as was done in
Section 3.1 above.

If n > 0, let 2’ be the immediate successor of z in (X, R). We cannot
have v € T(z') or else our requirement would already be dead for pu. If
Fy € T(z'), we can reduce to the case n — 1 by replacing = by z'. So
suppose Fy ¢ T'(z'). Then we have neither B = T'(z') nor T(z') 3 B.
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Hence, by the Lemma, we must have B—3T'(z'). Therefore it suffices to fix
y € W — X and set:

X' = Xu{y)
R = Rleup{(z,),(y,2)} U{(v.y) : vRz} U{(y,) : (a' Rv)}
I = TU{(yB)

In other words, we insert a point between x and z', assigning it the set B.
Requirements of form 8(2) are handled similarly, using a mirror image of
the Lemma, proved using (A2b). No further modifications in the work of
Section 3.1 above are called for.

The foregoing argument also establishes the following: let Lyiee be the
extension of L; obtained by adding (A2b) as an extra axiom. Let Kipee
be the class of trees, defined for present purposes as those partial orders in
which the predecessors of any element are totally ordered. Then Lyee is
complete for Kiree-

It is worth remarking that the following are valid over total orders:

FPp— PpVvpVFp, PFp— PpVpV Fp.

To find deductions of them in Ls is a nontrivial exercise. As a matter of
fact, these two items could have been used instead of (A2a, b) as axioms
for total orders. One could equally well have used their contrapositives:

HpApANGp— GHp, HpApAGp— HGp.

The converses of these four items are valid over partial orders.

3.3 No Extremals (No Mazimals, No Minimals)

Let L3 (resp. Lg4) be the extension of Ly obtained by adding (A3a, b)
(resp. (Ada, b)) as extra axioms. Let K3 (resp. K4) be the class of total
orders having (resp. not having) a maximum and a minimum. Beyond
understanding the notions of consistency and MCS relative to L3 or Ly as
the case may be, no modification in the work of Section 3.2 above is needed
to prove Ls complete for K3 and Ly for 4. The following observations
suffice:

On the one hand, understanding consistency and MCS relative to Lg, if
(X, R) is any total order and T any perfect chronicle on it, then for any
z € X, either GL € T(z) itself, or FGL € T(x) and so GL € t(y) for
some y with xRy—this by (A3a). But if GL € T(z), then with w with
zRw would have to have L € T'(w), which is impossible so z must be the

maximum of (X, R). Similarly, A3b guarantees the existence of a minimum
in (X, R).

On the other hand, understanding consistency and MCS relative to Ly,
if (X, R) is any total order and T any perfect chronicle on it, then for any
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x € X we have GT — FT € T(z), and hence FT € T(z), so there must be
ay with (T € T(y) and) zRy— this by (A4a). Similarly, (A4b) guarantees
that for any x there is a y with yRx.

The foregoing argument also establishes that the extension of L; ob-
tained by adding (A4a, b) is complete for the class of partial orders having
nonmaximal or minimal elements.

It hardly needs saying that one can axiomatise the view (characteristic
of Western religious cosmologies) that Time had a beginning, but will have
no end, by adding (A3b) and (A4a) to Lo.

3.4 Density

The extension Lz of Lo obtained by adding (Aba) (or equivalently (A5b))
is complete for the class K5 of dense total orders. The main modification
in the work of Section 3.2 above needed to show this is that in addition to
requirements of forms 8(1,2) we need to consider requirements of the form:

5. if xRy, then there exists a z with xRz and zRy.

To ‘kill’ such a requirement, given a coherent chronicle T on a finite total
order (X, R and z,y € X with y immediately succeeding x, we need to be
able to insert a point z between z and y, and find a suitable MCS to assign
to z. For this the following suffices:

LEMMA Let A, B be MCSs with A—3 B. Then there exists an MCS C with
A3C and C3B.

Proof. The problem quickly reduces to showing {Pa:a € A}U{Fg: 3 €
B} consistent. For this it suffices to show that if « € A and 8 € b, then
F(PaAFp) e A. Now if 8 € B, then since A—3B, F3 € A, and by (Aba),
FFj3 e A. An appeal to 3(3) completes the proof. [ ]

FPpw~ PFp.”

Figure 1.
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Table 1.
GGHp~GHp FGHp=~ GHp
GFHp~GHp FFHp= FHp
GPGp =~ Gp FPGp~ FGp
GPHp~ PHp FPHp~ PHp
GFGp=~ FGp FFGp= FGp
GHPp~ HPp FHPp=~ HPp
GGFp~GFp FGFp=~GFp
GGPp=~GPp FGPp= FPp
GHFp~GFp FHFp= Fp
GFPp~FPp FFPp=~ FPp
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Similarly, the extension Lq of L obtained by adding (A4a, b) and (A5a)
is complete for the class of dense total orders without maximum or mini-
mum. A famous theorem tells us that any countable order of this class is
isomorphic to the rational numbers in their usual order. Since our method
of proof always produces a countable frame, we can conclude that Lq is
the tense logic of the rationals. The accompanying diagram (1) indicates
some implications that are valid over dense total orders without maximum
or minimum, and hence theses of Lq; no further implications among the
formulas considered are valid. A theorem of C. L. Hamblin tells us that in
Lq any sequence of Gs, Hs, F's and Ps prefixed to the variable p is provably
equivalent to one of the 15 formulas in our diagram. It obviously suffices
to prove this for sequences of length three. The reductions listed in the
accompanying Table 1 together with their mirror images, suffice to prove
this. It is a pleasant exercise to verify all the details.

3.5 Discreteness

The extension Lg of Lo obtained by adding (A6a, b) is complete for the
class Kg of total orders in which every element has an immediate successor
and an immediate predecessor. The proof involves quite a few modifications
in the work of Section 3.2 above, beginning with:

LEMMA For any MCS A there exists an MCS B such that:
1. whenever Fy € A then vV Fry € B.
Moreover, any such MCS further satisfies:

2. whenever Pd € B, then 6 V P§ € A,
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3. whenever A—3C, then either B=C or B-3C,
4. whenever C —3 B, then either A = C or C—3 A.

Proof.

1. The problem quickly reduces to proving the consistency of any finite
set of formulas of the forms Pa for a € A and vV Fy for Fy € A. To
establish this, one notes that the following is valid over total orders,
hence a thesis of (Lo and a fortiori of) Lg:

FpoANFpy A...\ Fp, —
F((poV FEpo) AN(prV Fp1) A...A(pnV Fpy))

2. We prove the contrapositive. Suppose 6V P§ ¢ A. By (A6a), FH-¢ €
A. by part (1), H-0V FH-6 € B. But FHp — Hp is valid over total
orders, hence a thesis of Ly and a fortiori of) Lg. So H-é € B and
Pé ¢ B as required.

3. Assume for contradiction that A—3 C but neither B = C' nor B—3C.
Then there exist a 7 € C with 79 ¢ B and a v, € C with Fy; € B.
Let y =y A~. Then v € C and since A3C,Fy€ A. but yVFvy ¢
B, contrary to (1).

4. Similarly follows from (2). |

We write A—3'B to indicate that A, B are related as in the above Lemma.
Intuitively this means that a situation of the sort described by A could be
immediately followed by one of the sort described by B.

We now take M to e the set of quadruples (X, R,S,T) where on the one
hand, as always X is a nonempty finite subset of W, R a total order on X,
and T a coherent chronicle on (X, R); while on the other hand, we have:

4. whenever xSy, then y immediately succeeds z in (X, R),
5. whenever xSy, then T'(z) 3'T(y),

Intuitively xSy means that no points are ever to be added between x and
y. Wesay (X', R',S",T") extends (X, R,S,T) if on the one hand, as always,
Definition 10(1’, 2', 3') hold; while on the other hand, S C S’. In addition
to requirements of the form 8(1, 2) we need to consider requirements of the
form:

5. there exists a y with xSy,

4. there exists a y with ySx.
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To ‘kill’ a requirement of form (5), take an MCS B with T'(x) 3'B. If x is
the maximum of (X, R) it suffices to fix z € W — X and set:

X' = Xu{z}, R RU{(z,2)} U{(v,2) : vRz},
S = SU{(z,2)}, T = TU{(z,B)}

Otherwise, let y immediately succeed z in (X, R). If B = T'(y) set:

X' = X, R = R,
S = SU{(z,y)} T T.

Otherwise, we have B—3T(y), and it suffices to fix z € W — X and set:

X = X, R = RU{(z,2),(zy)}U
U{(v,2) : vRz} U {(2,v) : yRu},
S = SU{(z,2)}, T" = TU{zB)}

Similarly, to kill a requirement of form (6) we use the mirror image of
the Lemma above, proved using (A6b).

It is also necessary to check that when xSy we never need to insert a
point between x and y in order to kill a requirement of form 8(1) or (2).
Reviewing the construction of Section 3.2 above, this follows from parts (3),
(4) of the Lemma above. The remaining details are left to the reader.

A total order is discrete if every element but the maximum (if any) has
an immediate successor, and every element but the minimum (if any) has
an immediate predecessor. The foregoing argument establishes that we get
a complete axiomatisation for the tense logic of discrete total orders by
adding to Lo the following weakened versions of (A6a, b):

pANHp—-GLV FHp, pANGp— HLV PGp.

A total order is homogeneous if for any two of its points x,y there exists
an automorphism carrying « to y. Such an order cannot have a maximum
or minimum and must be either dense or discrete. In Burgess [1979] it is
indicated that a complete axiomatisation of the tense logic is homogeneous
orders is obtainable by adding to L4 the following which should be compared
with (A5a) and (A6a, b):

(Fp— FFp)V[(gANHq— FHq) A (¢ AN Gg — PGq)].

3.6 Continuity

A cut in a total order (X, R) is a partition (Y, Z) of X into two nonempty
pieces, such that whenever y € Y and z € Z we have yRz. A gap is a cut
(Y, Z) such that ¥ has no maximum and Z no minimum. (X, R) is complete
if it has no gaps. The completion (X, RT) of a total order (X, R) is the
complete total order obtained by inserting, for each gap (Y, Z) in (X, R),
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an element w(Y, Z) after all elements of Y and before all elements of Z.
For example, the completion of the rational numbers in their usual order is
the real numbers in their usual order. The extension L; of Ly obtained by
adding (A7a, b) is complete for the class K7 of complete total orders. The
proof requires a couple of Lemmas:

LEMMA Let T be a perfect chronicle on a total order (X, R), and (Y,Z) a
gap in (X, R). Then if Ga € T(z) for all z € Z, then Ga € T(y) for some
yevy.

Proof. Suppose for contradiction that Ga € T'(z) for all z € Z but F-a ~
-Ga € T(y) for all y € Y. For any yo € Y we have F-a A FGa € T(y).
Hence, by A7a, F(Ga AN HF-a) € T)yo), and there is an z with yoRx and
Ga € HF-a € T(z). But this is impossible, since if z € Y then Ga ¢ T'(x),
while if x € Z then HF-a & T'(x). [ ]

LEMMA Let T be a perfect chronicle on a total order (X, R). Then T can
be extended to a perfect chronicle T on its completion (X+, RT).

Proof. For each gap (Y, Z) in (X, R), the set:
CY,Z)={Pa:FyeY(aeT(y)}U{Fa:Fz€ Z(a e T(2))}

is consistent. This is because any finite subset, involving only v1,...,¥ym
form Y and zi,...,2, from Z will be contained in T'(z) where z is any
element of Y after all the y; or any element of Z before all the z;. Hence,
we can define a coherent chronicle T% on (X, RT) by taking T+ (w(Y, Z))
to be some MCS extending C(Y, Z). Now if Fa € TT(w(Y, Z)), we claim
that Fa € T(z) for some z € Z. For if not, then G-a € T(z) for al
z € Z, and by the previous Lemma, G—a € T'(y) for some y € Y. But then
PG-a, which implies =Fa, would belong to C(Y,Z) C TH(w(Y,Z)), a
contradiction. It hardly needs saying that if Foo € T'(2), then there is some
x with 2Rz and a fortiori w(Y, Z) Rt x having € T'(z). This shows T is
prophetic. Axiom (A7b) gives us a mirror image to the previous Lemma,
which can be used to show Tt historic. ]

To prove the completeness of Ly for K7, given a consistent -y use the
work of Section 2.2 above to construct a perfect chronicle T' on a frame
(X, R) such that vy € T'(xo) for some . Then use the foregoing Lemma
to extend to a perfect chronicle on a complete total order, as required to
prove satisfiability. |

Similarly, Lgr, the extension of L, obtained by adding (A4a, b) and (A5a)
and (A7a, b) is complete for the class of complete dense total orders without
maximum or minimum, sometimes called continuous orders. As a matter of
fact, our construction shows that any formula consistent with this theory is
satisfiable in the completion of the rationals, that is, in the reals. Thus Lgr
is the tense logic of real time and, hence, of the time of classical physics.
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3.7 Well-Orders

The extension Lg of Ly obtained by adding (A8) is complete for the class
KCg of all well-orders. For the proof it is convenient to introduce the abbre-
viations Ip for PpV pV Fp or ‘p sometime’, and Bp for p A =Pp or ‘p for
the first time’. an easy consequence of (A8) is Ip — IBp: if something ever
happens, then there is a first time when it happens the reader can check
that the following are valid over total orders; hence, theses of (Ly and a
fortiori of Lg):

1. IpANIq—=I(PpAq)VIpAg)VI(pAPq),
2. I(gANFr)NI(PBpA Bq) —» I(pA Fr).

Now, understanding consistency, MCS, and related notions relative to Lg,
let 69 be any consistent formula and Dy any MCS containing it. Let
d1,...,0 be all the proper subformulas of dg. Let ' be the set of formulas
of form

(=)0 A (2)01 A ... A (=)

where each §; appears once, plain or negated. Note that distinct elements
of ' are truth-functionally inconsistent. Let IV = {y € I' : Iy € Dy}. Note
that for each v € I we have IBvy € Dy, and that for distinct v,v' € I we
must by (1) have either I(PBvy A BY') or I(PB~' A By) in Dy. Enumerate
the elements of I' as vo,71,...,vn so that I(PBy; A By;) € Do iff i < j.
We write ¢ < j if I(y; A Fy;) € Dg. This clearly holds whenever ¢ < j, but
may also hold in other cases. A crucial observation is:

(+) Ifi<j<kandk<i, then j<i

This follows from (2). These tedious preliminaries out of the way, we will
now define a set X of ordinals and a function ¢ from X to I'V. Let a,b,¢, ...
range over positive integers:

We put 0 € X and set £(0) = vo.

If 0 <0 we also put each a € X and set t(a) = 7o.

We put w € X and set t(w) = ;.

If 1 <1 we also put each { =w-b € X and set t(§) = 1.

If 1 <0 we also put each { =w-b+a € X and set t(§) = vo.
We put w? € X and set t(w?) = 7o.

If 2 <12 we also put each £ = w? - ¢ € X and set t(£) = 7s.

If 2<1 we also put each £ = w?-c+w-b € X, and set ¢(£) = ;.
If 2< we also put each £ = w?-c+w-b+a € X and set ¢(£) = 7.
and so on.

Using (+) one sees that whenever &, € X and & < 5, then i < j where
t(§) = v and ¢(n) = v;. Conversely, inspection of the construction shows
that:
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1. whenever £ € X and t(§) = v; and j < k, then there is an n € X with
§ <nand i(n) =

2. whenever £ € X and t(¢§) = v; and i < j, then there is an n € X with
n < & and t(n) = ;.

For ¢ € X let T'(¢) be the set of conjuncts of ¢(¢) . Using (1) and (2) one
sees that T' satisfies all the requirements 8(1,2,3,4) for a perfect chronicle,
so far as these pertain to subformulas of 9. Inspection of the proof of

Lemma 9 then shows that this suffices to prove Jp satisfiable in the well-
order (X, <). ]

Without entering into details here, we remark that variants of Lg provide
axiomatisations of the tense logics of the integers, the natural numbers, and
of finite total orders. In particular, for the natural numbers one uses Ly,
the extension of Lo obtained by adding (A8) and p A Gp — HL V PGp.
L, is the tense logic of the notion of time appropriate for discussing the
working of a digital computer, or of the mental mathematical constructions
of Brouwer’s ‘creative subject’.

3.8 Lattices

The extension Lg of Ly obtained by adding (A4a, b) and (A9a, b) is com-
plete for the class Kg of partial orders without maximal or minimal elements
in which any two elements have an upper and a lower bound. We sketch
the modifications in the work of Section 3.2 above needed to prove this:
To begin with, we must revise clause 10(2) in the definition of M to read:

2g. R is a partial order on X having a maximum and a minimum.

This necessitates revisions in the proof of the Killing Lemma, for which the
following will be useful:

LEMMA Let A, B,C be MCSs. If A3 B and A—3C, then there exists an
MCS D such that B3D and C—3D.

Proof. The problem quickly reduces to showing {5 : GBS € B} U{y: Gy €
C'} consistent. For this it suffices (using 3(4)) to show that SA~ is consistent
whenever G € B,Gy € C. Now in that case we have FG3,FGy € A,
since A3 B,C. By A9a, we then have GF3 € A, and by 3(2) we then
have F(FB3ANGvy) € A and FF(3 A ~) € A, which suffices to prove g A v
consistent as required. |

Turning now to the Killing Lemma, trouble arises when for a given
(X,R,T) € M a requirement of form Definition 8(1) is said to be ‘killed’
for some z other than the maximum y of (X, R) and some Fvy € T(x).
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Fixing an MCS B with T'(z)—3B and v € B, and az € W — X, we would
like to ad z to z placing it after x and assigning it the MCS B. But we
cannot simply do this, else the resulting partial order would have no maxi-
mum. (For y and z would be incomparable.) So we apply the Lemma (with
A=T(x),C =T(y)) to obtain an MCS D with B—3 D and T'(y) 3 D. We
fix aw € W — X distinct from z, and set:

X'=XU{zw},
R'=RU{(z,2),(z,w)}U{(v,2) : vRz} U {(v,w) : v € X}.
T'=TU{(z,B),(w,D)}.

Similarly, a requirement of form 8(2) involving an element other than the
minimum is treated using the mirror image of the Lemma above, proved
using (A9b).

Now given a formula 7, consistent with Lg, the construction of Definition
10 above produces a perfect chronicle T' on a partial order (X, R) with
Yo € T(xg) for some xy. The work of Section 2.4 above shows that (X, R)
will have no maximal or minimal elements. Moreover, (X, R) will be a union
of partial orders (X, R,,) satisfying (2g). Then any z,y € X will have an
R-upper bound and an R-lower bound, namely the R,,- maximumand R,,-
minimum elements of any X,, containing them both. Thus, (X,R) € Ky
and 7y is satisfiable over K. |

A lattice is a partial order in which any two elements have a least upper
bound and a greatest lower bound. Actually, our proof shows that Lg is
complete for the class of lattices without maximum or minimum. It is
worth mentioning that (A9a, b) could have been replaced by:

FpANFq— F(PpAPq), PpAPq— P(FpAFq).

Weakened versions of these axioms can be used to give an axiomatisation
for the tense logic of arbitrary lattices.

4 THE DECIDABILITY OF TENSE LOGICS

All the systems of tense logic we have considered so far are recursively de-
cidable. Rather than give an exhaustive (and exhausting) survey, we treat
here two examples, illustrating the two basic methods of proving decidabil-
ity: one method, borrowed from modal logic, is that of using so- called fil-
trations to establish what is known as the finite model property. The other,
borrowed from model theory, is that of using so-called interpretations in
order to be able to exploit a powerful theorem of [Rabin, 1966].

THEOREM 13. Ly is decidable.

Proof. Let K be the class of models of (B1) and (B9a, b); thus K is like Ky
except that we do not require antisymmetry. Let K’ be the class of finite
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elements of IC. It is readily verified that Lg is sound for X and a fortiori
for K'. We claim that Lg is complete for K'. This provides an effective
procedure for testing whether a given formula « is a thesis of Lg or not,
as follows: search simultaneously through all deductions in the system Lg
and through all members of K'—or more precisely, of some nice countable
subclass of X' containing at least one representative of each isomorphism-
type. Eventually one either finds a deduction of «, in which case a is a
thesis, or one finds an element of X’ in which —« is satisfiable, in which case
by our completeness claim, « is not a thesis.

To prove our completeness claim, let g be consistent with Lg. We showed
in Section 2.9 above how to construct a perfect chronicle T on a frame
(X,R) € K9 C K having vy € T(zo) for some xg. For z € X let t(z) be the
set of subformulas of vy in T'(z). Define an equivalence relation on X by:

x ¢y iff t(z) = t(y).

Let [z] denote the equivalence class of z, X' the set of all [z]. Note that
X' is finite, having no more than 2* elements, where k is the number of
subformulas of 4y. Consider the relations on X' defined by:

aRTb iff xRy for some z € a and y € b,
aR'b iff for some finite sequence a = cy,c1,...,Cn_1,Cnp = b
we have ¢;RTc;yq for all i < n.

Clearly R' is transitive, while Rt and, hence, R' inherit from R the prop-
erties expressed by B9a, b. Thus (X', R') € K'. Define a function ¢ on X'
by letting #'(a) be the common value of ¢(z) for all x € a. In particular for
ap = [zo] we have g € ¢'(ap). We claim that ¢’ satisfies clauses 8(1, 2, 3, 4)
of the definition of a perfect chronicle so far as these pertain to subformulas
of 7. As remarked in Section 3.8 above, this suffices to show 7, satisfiable
in (X', R') and, hence, satisfiable over K' as required.
In connection with Definition 8(1), what we must show is:

1. whenever Fy € ¢(a) there is a b with aR'b and v € t(b)

Well, let a = [z], so Fy € t(z) C T(z). There is a y with 2Ry and v € #(y)
since T is prophetic. Letting b = [y] we have aRb and so aR'D.
In connection with Definition 8(3) what we must show is:

3'. whenever Gy € t(a) and aR'b, then v € £(b).
For this it clearly suffices to show:
3% whenever Gy € t(a) and aR™b, then v € t(b) and Gy € t(b).

To show this, assuming the two hypotheses, fix € a and y € b with xRy.
We have Gy € t(x) C T(x), so by (Ala), GGy € T'(x). Hence, v € t(y) and
G € t(y), since T' is coherent—which completes the proof.

Definitions 8(2, 4) are treated similarly. [ |
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THEOREM 14. Lg is decidable.

Proof. We introduce an alternative definition of walidity which is useful in
other contexts. To each tense-logical formula a we associate a first-order
formula & as follows: for a sentential variable p; we set p; = P;(x) where P;
is a one-place predicate variable. We then proceed inductively:

(ma)" =-a,
(anB) =anp
(Ga)" =Vy(z <y — a(y/z)),
(Ha)" =Vy(y <z — aly/x)).

Here (y/x) represents the result of substituting for = the alphabetically first
variable y not occurring yet. Given a valuation V in a frame (X, R) we
have an interpretation in the sense of first-order model theory, in which R
interprets the symbol < and V' (p;) the symbol P;. Unpacking the definitions
it is entirely trivial that we always have:

(*) a€ V(a) iff (X7 R7 V(p0)7 V(p1)7 V(p2)7 . ) F OAé(LIZ),

where F is the usual satisfaction relation of model theory. We now further
define:

a+ = VP()VPl, e ,VPkV.’E@(.’E),

where po, p1,...,pr include all the variables occurring in «. Note that o™
is a second-order formula of the simplest kind: it is monadic (all its second-
order variables are one- place predicate variables) and universal (consisting
of a string of universally-quantified second-order variables prefixed to a first-
order formula). It is entirely trivial that:

(+) ais valid in (X, R) iff (X, R) F ot

It follows that to prove the decidability of the tense logic of a given class
KC of frames it will suffice to prove the decidability of the set of universal
monadic (second-order) formulas true in all members of K.

Let 2<% be the set of all finite 0,1-sequences. Let %0 be the func-
tion assigning the argument s = (ig,i1,...,%n) € 2<% the value s x 0 =
(40,91, ...,1n,0), and similarly for *1. Rabin proves the decidability of the
set 525 of monadic (second order) formulas true in the structure (2<%, %0, x1).
He deduces as an easy corollary the decidability of the set of monadic for-
mulas true in the frame (Q, <) consisting of the rational numbers with their
usual order. This immediately yields the decidability of the system Lg of
Section 2.5 above. Further corollaries relevant to tense logic are the decid-
ability of the set of monadic formulas true in all countable total orders, and
similarly for countable well-orders.
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It only remains to reduce the decision problem for Ly to that for Lg. The
work of 2.7 above shows that a formula « is satisfiable in the frame (R, <)
consisting of the real numbers with their usual order, iff it is satisfiable in
the frame (Q, <) by a valuation V' with the property:

1. V() = Q for every substitution instance a of (A7a or b).
Inspection of the proof actually shows that it suffices to have:

2. V(a') = Q where o' is the conjunction of al instances of (A7a or b)
obtainable by substituting subformulas of a for variables.

A little thought shows that this amounts to demanding;:
3. V(e NGHd) # 2.

In other words, « is satisfiable in (R, <) iff a AGH' is satisfiable in (R, <),
which effects the desired reduction. For the lengthy original proof see [Bull,
1968]. Other applications of Rabin’s theorem are in [Gabbay, 1975]. Ra-
bin’s proof uses automata-theoretic methods of Biichi; these are avoided by
[Shelah, 1975]. [ ]

5 TEMPORAL CONJUNCTIONS AND ADVERBS

5.1 Since, Until, Uninterruptedly, Recently, Soon

All the systems discussed so far have been based on the primitives -, A, G, H.
It is well-known that any truth function can be defined in terms of =, A. Can
we say something comparable about temporal operators and G, H? When
this question is formulated precisely, the answer is a resounding NO.

DEFINITION 15. Let ¢ be a first-order formula having one free variable
z and no nonlogical symbols but the two-place predicate < and the one-
place predicates P, ..., P,. corresponding to ¢ we introduce a new n-place
connective, the (first-order, one-dimensional) temporal operator O(y). We
describe the formal semantics of O(yp) in terms of the alternative approach
of Theorem 14 above: we add to the definition of ~ the clause:

(O(p)(an,...,an)) = (@1 /P, ..., 4n)Py).

Here &/ P denotes substitution of the formula & for the predicate variable
P. We then let formula (*) of Theorem 14 above define V() for formulas «
involving O(¢). Examples 16 below illustrate this rather involved definition.
If O ={0(p1),...,0(¢r)} is a set of temporal operators, an O-formula is
one built up from sentential variables using —, A, and elements of O. A
temporal operator O(y) is O- definable over a class K of frames if there
is an O- formula « such that O(p)(p1,...,pn) < «a is valid over K. O is
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temporally complete over K if every temporal operator is O-definable over
KC. Note that the smaller K is—it may consist of a single frame— the easier
it is to be temporally complete over it.

EXAMPLES 16.
L Vy(z <y — Pi(y))
y <z — Pi(y))

2. Vy(
3. y(zr <yAVz(z < zAz<y— Pi(2)))
4. Jyly <z AVz(y <zAz<z— P(2)))

5.yl <y ANPi(y) AV2z(y <z Az <z — Pi(2)))

For (1), O(yp) is just G. For (2), O(p) is just H. For (3), O(p) will be
written G', and may be read ‘p is going to be uninterruptedly the case for
some time’. For (4), O(p) will be written H', and may be read ‘p has been
uninterruptedly the case for some time. For (5), O(y) will be written U,
and U (p, g may be read ‘until p, ¢’; it predicts a future occasion of p’s being
the case, up until which ¢ is going to be uninterruptedly the case. For (6),
O(p) will be written S, and S(p,¢) may be read ‘since p,¢’. In terms of
G' we define F' = =G;—, read ‘p is going to be the case arbitrarily soon’.
In terms of H' we define P’ = —H'—, read ‘p has been the case arbitrarily
recently’. Over all frames, Gp is definable as ~U (—p, T), and G’ as U(T, p).
Similarly, H and H' are definable in terms of S. The following examples

are due to H. Kamp:
PROPOSITION 17. G' is not G, H-definable over the frame (R, <).

Sketch of Proof. Define two valuations over that frame by:
V(p) ={0,£1,£2,£3,...} W(p)=V(p)U {:I:%,:I:%,:I:%,...}

Then intuitively it is plausible, and formally it can be proved that for any
G, H-formula o we have 0 € V(«) iff 0 € W(a). But 0 € V(G'p) —
W(G'p). [ ]
PROPOSITION 18. U is not G, H,G', H'-definable over the frame (R, <).

Sketch of Proof. Define two valuations by:

Vip) = {£1,£2,4£3,+4,...} W(p) = {£2,£3,%4,...}
V(q) = W(q) = the union of the open intervals
cey(=5,-4),(-3,-2),(—-1,+1),
(+2,+3), (+4,+5), ...

Then intuitively it is plausible, and formally it can be proved that for any
G, H,G', H'-formula o we have 0 € V() iff 0 € W (). But 0 € V(U(p, q) —
W(U(p,q))- u
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Such examples might inspire pessimism, but [Kamp, 1968] proves:

THEOREM 19. The set {U, S} is temporally complete over continuous or-
ders.

We will do no more than outline the difficult proof (in an improved version
due to Gabbay): Let O be a set of temporal operators, K a class of frames.
An O-formula « is purely past over K if whenever (X,R) € K and z €
K and V,W are valuations in (X, R) agreeing before x (so that for all 4,
Vp)) N{y : yRx} = W(p;) N{y : yRx}) then = € V(a) iff z € W(a).
Similarly, one defines purely present and purely future, and one defines pure
to mean purely past, or present, or future. Note that Hp, H'p, S(p, q), are
purely past, their mirror images purely future, and any truth-functional
compound of variables purely present. O has the separation property over
KC if for every O-formula « there exists a truth- functional compound g of
O-formulas pure over K such that a <> 3 is valid over K. O is strong over
K if G, H are O-definable over K. Gabbay [1981a] proves:

Criterion 20. Over any given class K of total orders, if O is strong and
has the separation property, then it is temporally complete.

A full proof being beyond the scope of this survey (see, however, the
next chapter ‘Advanced Tense Logic’), we offer a sketch: we wish to find
for any first-order formula ¢(z,<,P,...,P,) an O-formula a(p1,...,pn)
representing it in the sense that for any (X, R) € K and any valuation V
and any a € X we have:

ac V(Oé) iff (Xa Rav(pl)a . 7V(pn) F QO(CL/QL')

The proof proceeds by induction on the depth of nesting of quantifiers in ¢,
the key step being p(z) = Jy¢(z,y). In this case, the atomic subformulas
of ¢ are of the forms P;(z), P;(2),z < z,z =z, < z,z = w, z < w, where z
and w are variables other than z. Actually, we may assume there are no sub-
formulas of the form P;(z) since these can be brought outside the quantifier
Jy. We introduce new singulary predicates Q—, Q°, @1 and replace the sub-
formulas of 1 of forms z < z,2 = x,2 < 2z by Q~(2), Q°(2), QT (), to obtain
a formula 9(y, <, P1, ..., Py, @7, Q% Q) to which we can apply our induc-
tion hypothesis, obtaining an O-formula 6(p1,...,pn,q,q°, ¢") represent-
il’lg it. Let 7(pla e 7Spn) = 5(]7— la s 7pnaF(I7anq)a and 6 = P,‘VVP}/VF’Y
It is readily verified that for any (X,R) € K and any a,b € X and any
valuation V with V' (¢) = {a} that we have:

be V(7) iff (X7 R7V(p1)7 . 7V(pn)) F ¢(a/w7b/y)7

By hypothesis, 8 is equivalent over K to a truth-functional compound of
purely past formulas §;, purely present ones 5?, and purely future ones
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B . In each B; (resp. ,6?) (resp. ;) replace ¢ by L (resp. T) (resp. L)
to obtain an O-formula «. It is readily verified that a represents .
It ‘only’ remains to show:

LEMMA 21. The set {U,S} has the separation property over complete or-
ders.

Though a full proof is beyond the scope of this survey, we sketch the
method for achieving the separation for a formula « in which there is a
single occurrence of an S within the scope of a U. This case (and its mirror
image) is the first and most important in a general inductive proof.

To begin with, using conjunctive and disjunctive normal forms and such
easy equivalences as:

UlpVaq,t) < Up,t)VU(qg,t),
Ulp,gAr) < Ulp,q) NU(p,7),
=S(q,r) +» S(=r,—q) V P'—r,

we can achieve a reduction to the case where a has one of the forms:
1. U(pAS(g,r),t)
2. U(p,g A S(r,1))

For (1), an equivalent which is a truth-functional compound of pure for-
mulas is provided by :

. [(S(g,r) Vo) AU, r AV U(gAU(p,r At),t)
For (2) we have:

2. (SO AD VI AU t) vV UB D]}V B

where 8 is: F'=t AU(p,qV S(r,t)). This, despite its complexity, is purely
future. The observant reader should be able to see how completeness is
needed for the equivalence of (2) and w').

Unfortunately, U and S take us no further, for Kamp proves:

PROPOSITION 22. The set {U, S} is not temporally complete over (Q, <).

Without entering into details, we note that one undefinable operator is
O(p) where @ says:

Jyz<yAVz(z<zAz<y—
Vw(z <wAw <z = P ((w) VVw(z <wAw <y — Pa(w)))))

Over complete orders O(y)(p, q¢) amounts to U(G'q A (pV q), p).
J. Stavi has found two new operators U’, S’ and proved:

THEOREM 23. The set {U,S,U’,S"} is temporally complete over total or-
ders.
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Gabbay has greatly simplified the proof: the idea is to try to prove the
separation property over arbitrary total orders, and see what operators one
needs. One quickly hits on the right U’,S’. The combinatorial details
cannot detain us here.

What about axiomatisability for U, S-tense logic? Some years ago Kamp
announced (but never published) finite axiomatisability for various classes
of total orders. Some are treated in [Burgess, 1982], where the system for
dense orders takes a particularly simple form: we depart from standard
format only to the extent of taking U, S as our primitives. As characteristic
axioms, it suffices to take the following and their mirror images:

G(p—q) = (U(p,r) = Ulg,r)) A((U(r,p) = U(r,q))

pAU(g,r) = Ul(gAS(p,r),7),

Ulp,q) < Up,q AU (p,q)) < U(gAU(p,9),9),

U(,q) AN=U(p,r) = Ulg A -r,q),

Ulp,q) NU(r,s) 2 UpAr,gAsVUPAs,gANs)VU(QAT,qAS).

A particularly important axiomatisabiity result is in [Gabbay et al., 1980].

What about decidability? Rabin’s theorem applies in most cases, the
notable exceptions being complete orders, continuous orders, and (R, <).
Here techniques of monadic second-order logic are useful. Decidability for
the cases of complete and continuous orders is established in [Gurevich,
1977, Appendix]; and for (R, <) in [Burgess and Gurevich, 1985]. A fact
(due to Gurevich) from the latter paper worth emphasising is that the U, S-
tense logics of (R, <) and of arbitrary continuous orders are not the same.

5.2 Now, Then

We have seen that simple G, H-tense logic is inadequate to express certain
temporal operators expressible in English. Indeed it turns out to be inade-
quate to express even the shortest item in the English temporal vocabulary,
the word ‘now’. Just what role this word plays is unclear— some incautious
writers have even claimed it is semantically redundant— but [Kamp, 1971]
gives a thorough analysis. Let us consider some examples:

0. The seismologist predicted that there would be an earthquake.
1. The seismologist predicted that there would be an earthquake now.

2. The seismologist predicted that there would already have been an
earthquake before now.

3. The seismologist predicted that there would be an earthquake, but
not till after now.
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As Kamp says:

The function of the word ‘now’ in (1) is to make the clause
to which it applies—i.e. ‘there would be an earthquake’—refer
to the moment of utterance of (1) and not to the moment of
moments (indicated by other temporal modifiers that occur in
the sentence) to which the clause would refer (as it does in (0))
if the word ‘now’ were absent.

5.3 Formal Semantics

To formalise this observation, we introduce a new one-place connective J
(for jetzt). We define a pointed frame to be a frame with a designated
element. A wvaluation in a pointed frame (X, R, zo) is just a valuation in
(X < R). We extend the definition of 0.4 above to G, H, J-formulas by
adding the clause:

V(Ja) =X ifxg € V(a), @ if 2o & V()

is walid in (X, R, xo) if zo € V(a) for all valuations V.

An alternative approach is to define a 2-valuation in a frame (X, R) to b
a function assigning each p; a subset of the Cartesian product X2. Parallel
to 1.4 above we have the following inductive definition:

V(ma) = X? - V(a),
ViaAB)=V(a)nV(B),

V(Ga) = {(z,y) : Vo' (zRz' — (z',y) € V(a)},
V(Ha), similarly,

V(Ja) ={(z,y) : (y,y) € V(a)}

a is valid in (X, R) if {(y,y) : y € X} C V(«) for all 2-valuations V.

The two alternatives are related as follows: Given a 2-valuation V' in the
frame (X, R), for each y € X consider the valuation V), in the pointed frame
(X < R,y) given by Vy(p;) = {z : (z,y) € V(p;)}. Then we always have
(y,y) € V(a) iff y € Vy(a).

The second approach has the virtue of making it clear that though J is
not a temporal operator in the sense of the preceding section, it is in a sense
that can be made precise a two-dimensional tense operator. This suggests
the project of investigating two-and multi-dimensional operators generally.
Some such operators, for instance the ‘then’ of [Vlach, 1973], have a natural
reading in English. Among other items in our bibliography, [Gabbay, 1976]
and [Gabbay and Guenthner, 1982] contain much information on this topic.

Using J we can express (0)—(3) as follows:

0. P (seismologist says: F' (earthquake occurs)),

1. P (seismologist says: J (earthquake occurs)),
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2'. P (seismologist says: JP (earthquake occurs)),
3. P (seismologist says: JF (earthquake occurs)).

The observant reader will have noted that (0')—(3') are not really repre-
sentable by G, H, J-formulas since they involve the notion of ‘saying’ or
‘predicting’), a propositional attitude. Gabbay, too, gives many examples of
uses of ‘now’ and related operators, and on inspection these, too, turn out
to involve propositional attitudes. That this is no accident is shown by the
following result of Kamp:

THEOREM 24 (Eliminability theorem). For any G, H, J-formula « there
is a G, H-formula o equivalent over all pointed frames.

Proof. Call a formula reduced if it contains no occurrence of a J within
the scope of a G or an H. Our first step is to find for each formula a an
equivalent reduced formula ag. This is done by induction on the complexity
of o, only the cases « = G or @« = Hf being nontrivial. In, for instance,
the latter case, we use the fact that any truth-function can be put into
disjunctive normal form, plus the following valid equivalence:

(R) w({(JpANQ AT) = (JpANH(qV )V (=JpAHr))

Details are left to the reader. Our second step is to observe that if g is
reduced, then it is equivalent to the result 8~ of dropping all its occurrences
of J. It thus suffices to set a* = (ag)~. [ ]

The foregoing theorem says that in the presence of truth-functions and G
and H, the operator J is, in a sense, redundant. By contrast, examples (0)—
(3) suggest that in contexts with propositional attitudes, J is not redundant;
the lack of a generally-accepted formalisation of the logic of propositional
attitudes makes it impossible to turn this suggestion into a rigorous theorem.
But in contexts with gquantifiers, Kamp does prove rigorously that J is
irredundant. Consider:

4. The Academy of Arts rejected an applicant who was to become a
terrible dictator and start a great war.

5. The Academy of arts has rejected an applicant who is to become a
terrible dictator and start a great war.

The following formalisations suggest themselves:
4’ P(3z(R(z) AN FD(z))

5. P(3z(R(x) A JFD(x)),
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the difference between (4) and (5) lying precisely in the fact that the latter,
unlike the former, definitely places the dictatorship and war in the hearer’s
future. What Kamp proves is that (5') cannot be expressed by a G, H-
formula with quantifiers.

Returning to sentential tense logic, Theorem 24 obviously reduces the
decision problem for G, H, J-tense logic to that for G, H- tense logic. As for
axiomatisability, obviously we cannot adopt the standard format of G, H-
tense logic, since the rule TG does not preserve validity for G, H, J-formulas.
For instance:

(DO) p« Jp

is valid, but G(p < Jp) and H(p < Jp) are not. Kamp overcomes this
difficulty, and shows how, in very general contexts, to obtain from a com-
plete axiomatisation of a logic without J, a complete axiomatisation of the
same logic with J. For the sentential G, H, J- tense logic of total orders,
the axiomatisation takes a particularly simple form: take as sole rule MP.
Let Lp abbreviate Hp A p A Gp. Take as axioms all substitution instances
of tautologies, of (Do) above, and of La, where @ may be any item on the
lists (D1), (D2) below, or the mirror image of such an item:

(D1) G(p — q) = (Gp — Gq)
p — GPp
Gp & GGp
Lp <+ GHp

(D2) Jp < = Jp
J(pAg) < JpAJgq
~L~Jp < LJp
Lp — Jp.

(In outline, the proof of completeness runs thus: using (D1) one deduces
Lp — LLp. It follows that the class of theses deducible without use of (DO)
is closed under TG. Our work in Section 3.2 shows that we then get the
complete G, H-tense logic of total orders. We then use (D2) to prove the
equivalence (R) in the proof of Theorem 24 above. More generally, for any
a,a +» ap is deducible without using (D0). Moreover, using DO, 8 < 8~
is deducible for any reduced formula 5. Thus in general a <> a* is a thesis,
completing the proof.)

6 TIME PERIODS

The geometry of Space can be axiomatised taking unextended points as
basic entitites, but it can equally well be axiomatised by taking as basic
certain regular open solid regions such as spheres. Likewise, the order of
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Time can be described either (as in Section 1.1) in terms of instants in terms
of periods of non zero duration. Recently it has become fashionable to try to
redo tense logic, taking periods rather than instants as basic. Humberstone
[1979] seems to be the first to have come out in print with such a proposal.
This approach has become so poplar that we must give at least a brief
account of it; further discussion can be found in [van Benthem, 1991]. (See
also Kuhn’s discussion in the last chapter of this Volume of the Handbook.)
In part, the switch from instants to periods is motivated by a desire to
model certain features of natural language. One of these is aspect, the verbal
feature which indicates whether we are thinking of an occurrence as an event
whose temporal stages (if any) do not concern us, or as a protracted process,
forming, perhaps the backdrop for other occurrences. These two ways of
looking at death (a popular, if morbid, example) are illustrated by:

When Queen Anne died, the Whigs brought in George.

While Queen Anne was dying, the Jacobites hatched treasonable
plots.

Another feature of linguistic interest is the peculiar nature of accomplish-
ment verbs, illustrated by:

1. The Amalgamated Conglomerate Building was built during the pe-
riod March—August 1972.

1. The ACB was built during the period April-July, 1972.

2. The ACB was being built (i.e. was under construction) during the
period March—August, 1972.

2! The ACB was under construction during the period April- July,
1972.

Note that (1) and (1) are inconsistent, whereas (2) implies (2)!

In part, the switch is motivated by a philosophical belief that periods are
somehow more basic than instants. This motivation would be more con-
vincing were ‘periods’ not assumed (as they are in too many recent works)
to have sharply-defined (i.e. instantaneous) beginnings and ends. It may
also be remarked that at the level of experience some occurrences do appear
to be instantaneous (i.e. we don’t discern stages in them). Thus ‘bubbles
when they burst’ seem to do so ‘all at once and nothing first’. While at
the level of reality, some occurrences of the sort studied in quantum physics
may well take place instantaneously, just as some elementary particles may
well be pointlike. Thus the philosophical belief that every occurrence takes
some time (period) to occur is not obviously true on any level.

Now for the mechanics of the switch: for any frame (X, R) we consider the
set I(X, R) of nonempty bounded open intervals of form {z : zRz A zRy}.
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Among the many relations on this set that could be defined in terms of R
we single out two:

Inclusion: aCb iff Ve(x€a— zeb),
Order : a<b iff VaVy(zr€aAy€b— xzRy).

To any class K of frames we associate the class K’ of those structures of form
(I(X,R),C,<) with (X < R) € K, and the class KT of those structures
(Y, S,T) that are isomorphic to elements of K'.

A first problem in switching from instants to periods as the basis for the
logic of time is to find each important class K of frames a set of postulates
whose models will be precisely the structures in X*. For the case of dense
total orders without extrema, and for some other cases, suitable postulate
sets are known, though none is very elegant. Of course this first problem
is not yet a problem of tense logic; it belongs rather to applied first- and
second-order logic.

To develop a period-based tense logic we define a valuation in a structure
(Y, S, T)—where S, T are binary relations on Y—to be a function V' assign-
ing each p; a subset of Y. Then from among all possible connectives that
could be defined in terms of S and T, we single out the following:

V(ima) =Y = V(a)

ViaAB) = ( )NV(B)

V(Va) ={a:Vb(bSa — b€ V(a))}

V(Aa) ={a:VYb(aSb—be V(a))}

V(Fa) ={a:3b(aTbAbe V(a))}
V(Pa)={a:3(0dTanbeV(a))}.

The main technical problem now is, given a class L of structures (Y, .S, T)—
for instance, one of form L = KT for some class K of frames—to find a sound
and complete axiomatisation for the tense logic of L based on the above con-
nectives. Some results along these lines have been obtained, but none as
definitive as those of instant-based tense logic reported in Section 3. Indeed,
the choice of relations (C and <), and of admissible classes L (should we
only consider classes of form K*7?), and of connectives (-, A, A, V, F, P), and
of admissible valuations (should we impose restrictions, such as requiring
b € V(p;) whenever a € V(p;) and b C a?) are all matters of controversy.

The main problem of interpretation—one to which advocates of period-
based tense logic have perhaps not devoted sufficient attention—is how to
make intuitive sense of the notion a € V(p) of a sentence p being true with
respect to a time-period a. One proposal is to take this as meaning that p
is true throughout a. Now given a valuation W in a frame (X, R), we can
define a valuation I(W) in I(X, R) by I(W)(p;) = {a:a C W(p;)}. When
and only when V' has the form I(W) is ‘p is true throughout a’ a tenable
reading of a € V(p). It is not, however, easy to characterise intrinsically
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those V' that admit a representation in the form V' = I(W). Note that even
in this case, a € V(—p) does not express ‘(—p) is true throughout a’ (but
rather ‘—(p is true throughout a)’). Nor does a € V(p V q) express ‘(p V q)
is true throughout a’.

Another proposal, originating in [Burgess, 1982] is to read a € V(p) as
“t, is almost always true during a’. This reading is tenable when V has the
form J(W) for some valuation W in (X, R), where J(W)(p;) is by definition
{a : a — W(p;) is nowhere dense in the order topology on (XR)}. In this
case, ‘(—p) is almost always true during a’ is expressible by a € V(V-p),
and ‘(p V q) is almost always true during a; by a € V(V=-V=(p V q)). But
the whole problem of interpretation for period-based tense logic deserves
more careful thought.

There have been several proposals to redo tense logic on the basis of 3-
or 4- of multi-valued truth-functional logic. It is tempting, of instance, to
introduce a truth-value ‘unstatable’ to apply to, say, ‘Bertrand Russell is
smiling’ in 1789. In connection with the switch from instants to periods,
some have proposed introducing new truth-values ‘changing from true to
false’ and ‘changing from false to true’ to apply to, say, ‘the rocket is at
rest’ at take-off and landing times. Such proposals, along with proposals
to combine, say, tense logic and intuitionistic logic, lie beyond the scope of
this survey.

7 GLIMPSES AROUND

7.1 Metric Tense Logic

In metric tense logic we assume Time has the structure of an ordered Abelian
group. We introduce variables z,y, z, ... ranging over group elements, and
simples 0,4+, < for the group identity, addition, and order. We introduce
operators F,P joining terms for group elements with formulas. Here, for
instance, F(z + y)(p A ¢) means that it will be the case (x + y) time-units
hence that p and ¢q. Metric tense logic is intended to reflect such ordinary-
language quantitative expressions as ‘10 years from now’ or ‘tomorrow about
this time’ or ‘in less than five minutes’. The qualitative F, P of nonmetric
tense logic can be recovered by the definitions Fp < Jz > 0Fzp, Pp <
dz > 0Pzxp. Actually, the ‘ago’ operator P is definable in terms of the
‘hence’ operator F since Pxp is equivalent to F — zp. It is not hard to write
down axioms for metric tense logic whose completeness can be proved by a
Henkin-style argument.

But decidability is lost: the decision problem for metric tense logic is
easily seen to be equivalent to that for the set of all universal monadic
(second- order) formulas true in all ordered Abelian groups. We will show
that the decision problem for the validity of first-order formulas involving
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a single two-place predicate €é—which is well known to be unsolvable—is
reducible to the latter: given a first-order e-formula ¢, fix two one-place
predicate variables U, V. Let g be the result of restricting all quantifiers
in ¢ to U (i.e. Yz is replaced Vz(U(z) — ...) and 3z by Iz (U(z) A ...).)
Let o1 be the result of replacing each atomic subformula x € y of ¢y by
V() AV(z+2) AV(z + 2 +y)). Let 2 be the universal monadic
formula YUVV (32U () — ¢2). Clearly if ¢ is logically valid, then so is
2 and, in particular, the latter is true in all ordered Abelian groups. If
® is not logically valid, it has a countermodel consisting of the positive
integers equipped with a binary relation E. Consider the product Z x Z
where Z is the additive group of integers; addition in this group is defined
by (x,y)+(z',y") = (x+2',y+y'); the group is orderable by (z,y) < (z',y")
iff # <2’ or(x =2 and y < y'). Interpret U in this group as {(n,0) :
n > 0}; interpret V' as the set consisting of the (2™3",0),(2™3",m) and
(2m3"™,m + n) for those pairs (m,n) with mEn. This gives a countermodel
to the truth of (5 in Z x Z. Thus the desired reduction of decision problems
has been effected.

Metric tense logic is, in a sense, a hybrid between the ‘regimentation’ and
‘autonomous tense logic’ approaches to the logic of time. Other hybrids of
a different sort—not easy to describe briefly—are treated in an interesting
paper of [Bull, 1978].

7.2 Time and Modality

As mentioned in the introduction, Prior attempted to apply tense logic
to the exegesis of the writings of ancient and mediaeval philosophers and
logicians (and for that matter of modern ones such as C. S. Peirce and J.
Lukasiewicz) on future contingents. The relations between tense and mode
or modality is properly the topic of Richmond H. Thomason’s chapter in
this volume.

We can, however, briefly consider here the topic of so-called Diodorean
and Aristotelian modal fragments of a tense logic L. The former is the set
of modal formulas that become theses of L when Op is defined as p A Gp;
the latter is the set of modal formulas that becomes theses of L when Cp
is defined as Hp A p A Gp. Though these seem far-fetched definitions of
‘necessity’, the attempt to isolate the modal fragments of various tense
logics undeniable was an important stimulus for the earlier development of
our subject. Briefly the results obtained can be tabulated as follows. It
will be seen that the modal fragments are usually well-known C. I. Lewis
systems.
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Class of frames Tense logic Diodorean Aristotelian
fragment  fragment

All frames Lo T(=M) B
Partial orders L S4 B
Lattices Lo S4.2 B
Total orders Lo, Ly S4.3 S5

Dense orders

The Diodorean fragment of the tense logic Lg of discrete orders has been
determined by M. Dummett; the Aristotelian fragment of the tense logic of
trees has been determined by G. Kessler. See also our comments below on
R. Goldblatt’s work.

7.8 Relativistic Tense Logic

The cosmic frame is the set of all point-events of space-time equipped
with the relation of causal accessibility, which holds between u and v if
a signal (material or electromagnetic) could be sent from u to v. The
(n + 1)-dimensional Minkowski frame is the set of (n+ 1)-tuples f real num-
bers equipped with the relation which holds between (ag, ,...,a,) and
(bo, bl, vy bn) iff:

n

> (bn = an)® = (bo — ag)® > 0 and by > aq.
i—1

For present purposes, the content of the special theory of relativity is that
the cosmic frame is isomorphic to the 4-dimensional Minkowski frame.

A little calculating shows that any Minkowski frame is a lattice without
maximum or minimum, hence the tense logic of special relativity should
at least include Lg. Actually we will also want some axioms to express
the density and continuity of a Minkowski frame. A surprising discovery of
Goldblatt [1980] is that the dimension of a Minkowski frame influences its
tense logic. Indeed, he sows that for each n there is a formula ~,,4+1 which is
valid in the (m + 1)-dimensional Minkowski frame iff m < n. For example,
writing Ep for p A Fp, s is:

EpANEgANEr A-E(pAq) AN-E(pAr)A-E(qAT) —
E((EpNEq)V (EpAEr)V (EqA Er)).

On the other hand, he also shows that the dimension of a Minkowski frame
does not influence the diodorean modal fragment of its tense logic: the
Diodorean modal logic of special relativity is the same as that of arbitrary
lattices, namely S4.2. Combining Goldblatt’s argument with the ‘trousers
world’ construction in general relativity, should produce a proof that the
Diodorean modal fragment of the latter is the same as that of arbitrary
partial orders, namely S4.
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Despite recent advances, the tense logic of special relativity has not yet
been completely worked out; that of general relativity is even less well un-
derstood. Burgess [1979] contains a few additional philosophical remarks.

7.4 Thermodynamic Time

One of the oldest metaphysical concepts (found in Hindu theology and pre-
Socratic philosophy, and in modern psychological dress in Nietzsche and
celestial mechanical dress in Poincaré) is that everything that has ever hap-
pened is destined to be repeated over and over again. This leads to a
degenerate tense logic containing the principles Gp — Hp and Gp — p
among others.

An antithetical view is that traditionally associated with the Second Law
of Thermodynamics, according to which irreversible change are taking place
that will eventually drive the Universe to a state of ‘heat-death’, after which
no further change on a macroscopically observable level will take place. The
tense logic of this view, which raises several interesting technical points, has
been investigated by S. K. Thomason [1972]. The first thing to note is that
the principle:

(A10) GFp — FGp

is acceptable for p expressing propositions about macroscopically observable
states of affairs provided these do not contain hidden time references; e.g. p
could be ‘there is now no life on Earth’, but not ‘particle x currently has a
momentum of precisely &k gram- meters/second’ or ‘it is now an even number
of days since the Heat Death occurred’. For the antecedent of (A20) says
that arbitrarily far in the future there will be times when p is the case. But
for the p that concern us, the truth-value of p is never supposed to change
after the Heat Death. So in that case, there will come a time after which p
is always going to be true, in accordance with the consequent of (A10).

The question now arises, how can we formalise the restriction of p to a
special class of sentences? In general, propositions are represented in the
formal semantics of tense logic by subsets of X in a frame (X, R). A re-
stricted class of propositions could thus be represented by a distinguished
family B of subsets of X. This motivates the following definition: an aug-
mented frame is a triple (X, R, B) where (X, R) is a frame, B a subset of
the lower set B(X) of X closed under complementation, finite intersection,
and the operations:

gA
hA

{reX:Vye X(zRy -y € A)}
{reX:Vye X(yRz -y € A)}.

A valuationin (X, R, B) is a function V assigning each variable p; an element
of B. The closure conditions on B guarantee that we will then have V(a) € B
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for all formulas a. It is now clear how to define validity. Note that if
B = P(X), then the validity in (X, R, B) reduces to validity in (X, R);
otherwise more formulas may be valid in the former than the latter.

It turns out that the extension Lio of Lg obtained by adding (A10) is
(sound and) complete for the class of augmented frames (X, R, B) in which
(X, R) is a dense total order without maximum or minimum and:

VB € B3z(Vy(zRy — y € B) VVy(zRy — y & B)).

We have given complete axiomatisations for many intuitively important
classes of frames. We have not yet broached the questions: when does
the tense logic of a given class of frames admit a complete axiomatisation?
Wen does a given axiomatic system of tense logic correspond to some class
of frames in the sense of being complete for that class? For information
on these large questions, and for bibliographical references, we refer the
reader to Johan van Benthem’s chapter in Volume 3 of this edition of the
Handbook on so-called ‘Correspondence Theory’. Suffice it to say here that
positive general theorems are few, counterexamples many. The thermody-
namic tense logic Lyy exemplifies one sort of pathology. Though it is not
inconsistent, there is no (unaugmented) frame in which all its theses are
valid!

7.5 Quantified Tense Logic

The interaction of temporal operators with universal and existential quan-
tifiers raises many difficult issues, both philosophical (over identity through
changes, continuity, motion and change, reference to what no longer ex-
ists or does not exist, essence, and many, many more) and technical (over
undecidability, nonaxiomatisability, undefinability or multi-dimensioal op-
erators, and so forth) that it is pointless to attempt even a survey of the
subject in a paragraph or tow. We therefore refer the reader to Nino Coc-
chiarella’s chapter in this volume and James W. Garson’s chapter in Volume
3 of this edition of the Handbook, both on this subject.

Princeton University, USA.
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