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Cdmpleteness and decidability of three logics
of counterfactual conditionals?

by

DAVID LEWIS
{Princeton University)

Language

Qur Janguage will be that of the ordinary propositional calcu}.u\
supplemented with the counterfactual conditional connective
>, The sentence ¢ - p may be read as ‘If it were the
that ¢, then it would be the case that 3. ‘

Intented interpretation

A s.entence @ T+ y is intended to mean, roughly, that ¢ holds 1.
certain of the possible worlds in which ¢ holds: those of thern
that are most closely similar to our actual world..\/'Ve could captur;
this intention most straightforwardly by positing a .functmn |
which selects, for any sentence g and world i,.a §et fle, '1} of worl4;
regarded as the set of worlds most closely similar to 1 out of i
worlds in which ¢ holds.

But this approach is open to objection. Just as no real numh{’:
greater than 1 is closest to 0, so it may be tha"c none of the worj';:
in which ¢ holds is most closely similar to 1. It may .be 'thag foe |
each of them, there is another still closer. To mlee'? th}s difficui,
we could introduce the notion of degrees of similarity betm«
worlds, and take ¢ [0— y to mean that, unless no worlds in whi
¢ holds.are similar to any degree to our actuél &«Torld, Itherc;:s Sl
degree of similarity to our actual world within which there s

‘3 This research was supported by a feliowship from the Americ-an Coun... .
t earned Societies. § am grateful to Kit Fine for valuable suggestions and .

megnts.

oAl e given in [2].
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~me worlds in which ¢ holds, and within which y holds in all
worlds in which ¢ holds. .

To introduce the notion of degrees of similarity, it is fortunate-
.+ ot necessary to suppose that the similarity of worlds admits
f numerical measurement. We could posit a famii_y, indexed by
wurlds, of sets §; of sets of worlds; each Sin §, is regarded as the
.t of all worlds similar to at least a certain degree to the world i,
. we could posit a family, again indexed by worlds, of compara-
-ve similarity relations <, over sets of all or somie worlds;
-, kis regarded as meaning that the world j is at least as similar
o the world £ to the world i, o

A further account of the philosophical motivation and conse-
,ences of such an interpretation of counterfactual conditionals

Model theory

.esponding to these various approaches to the interpretation
" ounterfactuals, we will consider three different versions of the
-.del theory for our language. In each version, the intended
=adels are those in which I is the set of all possible worlds; [g}
s the set of those worlds in which the sentence ¢ holds; and 58,
v € is as described above.

o emodel is any triple <1, [ ], f> such that:

(¢.0.1) I'is a nonempty set, .
(@6:2) [ ] assigns to each sentence @ a subset [g] of I,

(@03} [~¢]=I-[¢], lp & v]=[g] n [y}, and so on for
the other truth-functional connectives,

(«.0.4) f assigns to each i in I and sentence g a suhset
flo, i) of I, '
(@0.5) ¢ T—yl=1{i € I: f{p, =[]},

. mtended a-models also meet at least three further conditions:

(«.0.6) flg, ) =1g), _
(a.0.7) fl(f f{sp, <[yl and f(y, <(gl, then flg, i) =
y)ll I ) .
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{0.0.8) either f{p vy, D<le] or flevy, D)E[y} or
o fle vy, i) =flp, i) v flw i)

Let us call any e-model that meets conditions (@.0.6—8)} standqrd
A f-model is any triple {J, 1 ], $) such that:

(A.0.1—3) (same as (a.0.1—3) above),

(8.0.4) § assigns to each i in I a nonempty set §, of |

subsets of [, -
(8.0.5) [¢ L= v} = i€nh{gln Ug;=Aorases
[A#[g] n SClv]l}

All intended f-models also meet at least this further condition

(3.0.6) $, is nested (that is, if §, T€8$, then SCT
T&S).

Let us call any p-model that meets condition (8.0.6) standard
A y-model is any triple (I, 1], <7 such that:

(y.0.1—3) (same as (¢.0.1—3) above),

(y.0.4} < assigns to eachiin/a 2-place relation <, oves
a subset S§; of I, p

(.05) [p O—>pl=li€L gl n S,=Ador |
3k € [¢] 0 S, Vj € [g] [if <, k then j € [y]

All intended y-models also meet at least this further conditivs

(y.0.6) <, is a total preordering of S, {that is, it .
' transitive and strongly connected in §;).

Let us call any ;'}-model that meets condition (v.0.6} standu;

It is highly plausible that all intended models meet two furth.:
conditions: roughly, that a world is at least as similar to itself ..
any other world is to it, and that no other world is as similar 1

a2 world as that world itself is. Let us call any standard modeli - b
meets these two conditions I-standard. More precisely, o

a-model is 1-standard iff it is standard and:

{a.1.1)if i € {g] then i € flg, i}, o
(a.1.2)if i € @) then j € flg, i) only if f=1.
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s p-model is 1-standard iff it is standard and:

(AL1)i€N§,
(f.l2)unless UB, =1, [ij €8,

s y-model is 1-standard iff it is standard and:

(y1.1}1 €S, and if j € 8, then'i <,
(v.L.2) unless §;= A, j<,iiff j=1i.

! t has been suggested by Stalnaker and Thomason, in f4] and

3, that all intended models meet another condition: roughly,
hat for each world i and sentence ¢, unless no world in which ¢
-olds is at all similar to 4, there is a unique closest world to i
awhich ¢ holds. Let us call any 1-standard model that meets this
ondition 2-standard. More precisely, an a-model is 2-standard
it is 1-standard and,

(a.2) f(s, i) contains at most one member.

y p-model is 2-standard iff it is 1-standard and:

(8.2} if [] au $,# 4, there are S €8, and j € [ such
that [¢] n S={j}.

-model is 2-standard iff it is 1-standard and:

{v2)if fp] 0 S;# A4, there is k € [p] n S, such that for
any j € [g], j<, k only if j=k,

swart from inessential technical differences, the models for sen-

. <.ntial conditional logic considered by Stalnaker and Thomason
e exactly our 2-standard a-models. .

A sentence @ is true at i in Iin a model {1, [ ], ... iff i € [g];
- valid in such a model iff I'=[¢], so that ¢ is true at every i in J.

Equivalent models

~.¢ calt two models (of the same or different sorts) equivalent iff

v have the same first and second components—the same I and

¢ same | J—and differ only in the third component: the §, §,

- -, as the case may be. We shall see that if we are given a stan-
©ocama, 11971 :
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dard a-model, we can coavert it into an equivalent B-model o
into an equivalent y-model.

Given a standard a-model I, [], f>, we begin by defining .
family, indexed by I, of relations <, over all sentences:

o< p=ar A#flg, V=fly vy, i) or f(y, )= .

In intended models, ¢ < ; v iff the closest worlds to i in which ,
holds are at least as close to i as are the closest worlds to |
which y holds.

Note that if [#]1<[8] and [y] n f(8, i}# 4 then, by (a.0.6—§;
{(n, i)={n] n f(6, i}. Note also that if [n1< (0] and f{4, i} = A thes
by (.0.6—7), fln, i)=A. Using these two observations, we cun
prove three useful lemmas about the relations <.

First lemma: <, is a total preordering of all sentences. To prove
that <, is strongly connected, note that if [¢] 0 flovay, i)z
then ¢ <y, if [y] n flg vy, i}# 4, then ¢ < ; ¢; otherwise f{g v,
=4, so flp, y=fly, )=, s0 9=, ¥ and conversely. To prove
that <, is transitive, note that if [¢] n fleg vy vy, i)# A, ther
o<y iflgl 0 flpvpvy i)=Aandfy&~glnflevyvy i)«
thennot ¢ < 1; if[g] n flp vy vy i)=Adamd [y &~ol o flpvyy
vy i)=Adand [y &~z &~gl nflgvevi, i}# A, thennot y < 4
otherwise, f{p vy vy, i}= 4, so fly, i}= .1 and again ¢ <, p. Soun
all cases if p<; x<,; v then ¢ <,y

Second lemma: if ¢ <, y, then {p] 0 flg, iYaflyw, 1). I [q]
flpvy )#Aand (] 0 flpvy, i}# /4, the consequent of the
lemma holds; if [¢] n flg vy, )#A and [p] 0 fle vy, i)=.1
[yl 0 f(p, i) = A and again the consequent holds; if fg] n fle vyt

= and jy] n f{e vy i)# 4, then not p <, v, otherwise f{g v,
iY=A=f(g, i}=f(w, i), so again the consequent holds.

Third lemma: if [¢] 0 f(y, i) # 4, then <, v Hlel 0 flgv,
i) = A, the consequent of the lemma holds; if fe] n flpvy, ij= 1
and [y] n flovy, =4, flp 0=yl n flevy, i) so the antecedcr:

of the lemma fails; otherwise f{p v ¥, i}=A=f(p, i) so again tl

antecedent fails.
Now let $ assign to each i in I the set of all subsets S of Isu.;

that, for some sentence ¢, S= U {f{y, i) 1 p <, o). We call <J, (!

$> the f-conversion of our original a-model (I, [}, f>. Using ou: ’
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sree lemmas about the relations <, it is easily verified that the
;conversion of a standard a-model is a standard f-model; that the
~-conversion of a standard e-model meeting {a.1.1) meets (§.1.1);
:hat the f-conversion of a standard a-model meeting («.1.2) meets

;1.2); and that the f-conversion of a standard a-model meeting
12) meets {8.2).

; Alternatively, let < assign to each i in I the relation <, such
| chat j<, k iff there are sentences ¢ and y such that j € f{g, i),
A fly i), and @< p. We call I, [, <5 the p-conversion of our
. rginal a-model. It is easily verified that the y-conversion of a
" undard a-model is a standard y-model; that the y-conversion of
, standard #-model meeting («.1.1) meets (y.1.1}; that the y-con-
.crsion of a standard a-model meeting {¢.1.2) meets (y.1.2); and
hat the y-conversion of a standard a-model meeting {a2) meets
-2, K
We went from a-models to f-models and y-models for the sake
{ generality; and we did indeed gain generality. Although every
sandard a-model can be converted to an equivalent f-model or
~model, the opposite is not the case. Consider, for instance, the
\-standard f-model (I, [ ], $) in which I is the set of real numbers;
awhich [o]is {i € L 0<i}, [o,}is {i € L i<}, [ophis {i € i<},
od in general [o,] is {i €I i<2-*} throughout a countable se-
uence of sentence letters; and in which $, is the set of all closed
atervals [i, x] with i £x. Or consider the equivalent 1-standard
- model in which I and {  are as just specified and <, is the usual
-Jering of the real numbers greater than or equal to i. There can
v no a-model equivalent to these two models. For in the two
- odels, 6 (b0, 0 [0 0y, 0 L 0y,.., ¢ (1> 0, ... are all true
\ .0, But there is no real number at which all of ¢, 0y, 0y, .., 54, ...
- etruein the original models. So there is no i in I that could serve
I,z member of f(s, 0} in an equivalent -model. Nor could f{s, 0}
" .. empty, since & [J—~o is not true at O in the two original
~odels.

© We might expect that as a result of the greater generality
* ined by moving to f-models and y-models, some valid sentences
-, ould be lost. As will be seen, this is not correct. Exactly the same
tences are valid in all standard a-models, in all standard f-
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models, and in all standard »-models; and likewise for l-stand. .
and 2-standard models of the three sorts.

Deductive systems

We may identify a deductive system with the set of its theorem,

This will be the smallest set of sentences closed under ceriay,

rules of inference and containing certain axioms {more precisely
all instances of certain axiom-schemata)}. Our rules of inferen, .
are, first, the rule of tautological implication (TI):

-1;, when p is a tautology,
22l when (3 & L. & x,)D v is a tautology;

and, second, the rule of deduction within conditionals (DW(

oy o & ... &x)2e
@ =9

([(f;wmf} 11] & ... & [(,'D — anD[(p D -y

The deductive system CO is generated by the rules T7 4p.
DWC and three basic axioms:

Axiom A. @ [ ¢,
Axiom B. ((p U y) & {y O ¢))2{{p O g)={y T z)),
Axiom C. {g vy U= gl vigve U=yl vilpvy O g
=lp O 1) & (w O 2)).

CO is the weakest system that has any claim to be called a lopn.
of conditionals; a system missing some of Axioms A—C miyl:
better be called a logic of sententially indexed modalities.

The system Cl1 is generated by the rules TT and DWC, Axion. .
A—C, and two further axioms:
Axiom D. {g [ yJ}D{(pD‘qJ],
Axiom E. ¢ & p2{p [O— ).

In my opinion, C1 is the correct logic of counterfactual cond,
tionals as we ordinarily understand them.

The system C2 is generated by the rules T1 and DWC, Axiom.
A—C, Axiom D, and one further axiom:

d
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wiom Fo {ep D=9 v (g 0> ~w).

i 2 contains Cl, since Axiom E follows by T from Axioms D and
. (2 is the same as Stalnaker’s differently axiomatized system of
¢ same name in [4], Stalnaker and Thomason [5] contains a
_woof, in effect, that C2 is sound and complete for the class of

:standard a-models. We shall proceed to obtain similar results

. r the weaker systems CO and C1, with respect to models of all
LLree S0rts.

Soundness resulis

_«h of the following observations is easily verified. The rule 71
{USETVES truth at any ¢ in I in any model, and hence preserves
Lhidity, The rule DWC, though not truth-preserving, preserves

Llidity in any a-model, in any standard f-model, and in any
~ndard y-model. Axiom A (more precisely, any instance thereof)

. valid in any e-model that meets condition («.0.6), in any -

wodel, and in any y-model. Axiom B is valid in any e-model that
cets condition (¢.0.7), in any standard f-model, and in any

sundard p-model. Axiom C is valid in any a-model that meets

wdition {.0.8), in any standard f-model, and in any standard y-
adel. Therefore any theorem of C0 is valid in any standard model.
Further, Axiom D is valid in any a-model that meets condition
1.1}, in any f-model that meets condition (8.1.1), and in any
model that meets condition (y.1.1}. Axiom E is valid in any

" -mode! that meets condition {«.1.2), in any S-model that meets
Lndition (£.1.2), and in any y-model that meets condition {y.1.2).

(herefore any theorem of Cl is valid in any l-standard model.
Further, Axiom F is valid in any a-model that meets condition
;7 in any f-model that meets condition (8.2), and in any y-

odel that meets condition (y.2). Therefore any theorem of C2
. valid in any 2-standard model.

Deducibility and consistency

i sentence @ is deducible from a set X of sentences in a deductive -
satem Loiff @ belongs to the smallest set of sentences closed
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under the rule TI and including both X and L. (Note that u R;
inappropriate to require closure under the non-truth-preserys; |
rule DWC.} A set of sentences is L-consistent iff not every r.z‘:kl
tence is deducible from it in L. A set of sentences ig maxin. ..
L-consistent iff it is L-consistent but not a subset of any larg.:
L-consistent set. Note that if a sentence g belongs to every mun,
mal L-consistent set that includes a set ' of sentences, then .
is deducible in L from some finite subset of Z.

Canonical models

The methods employed in the remainder of this paper are adapt,
from those developed for modal logic by Kaplan in {1} and by Leis,
mon and Scott in unpublished work described by Segerbery in [
If Lis any deductive system closed under the rules TI and Dl ¢
the canonical a-model for L is the triple <I, [ ], f> where I'is the oo
of all maximal L-consistent sets of sentences, [p]is {i €1 ¢ «
and flg, 1) is N{[y]: (p T w) €i}. It is easily verified that 1],
triple is indeed an a-model. (It is not an intended model, i ,
possible worlds are not really sets of sentences.) Part of th
verification merits closer examination: given that f(g, cly.
show that {¢ (J— y) € as follows. By hypothesis, » belongs 1,
every member of f(g, 1); that is, to every maximal L-consisters
set of sentences that includes the set X of all those sentences
such that (g T y) €i. Therefore y is deducible in I from .
finite subset of I Either y itself is a theorem of L or there

3

Al

X - Znin Zsuch that (1 & ... & x,) Dy is a theorem of L. Thep |

since L is closed under DWC, either ¢ [+ v or ([ Ci-r 7
& ... & (¢ (0> )2 {g (1> y) is a theorem of L; so, since |,
maximal L-consistent, (p [ ) € i,

It is also easily verified that if L contains Axiom A, the Canoni, ..
a-model for L meets condition {«.0.6); if I. contains Axiom B,
meets {a.0.7}; if L contains Axiom C, it meets (2.0.8); if L contair,
Axiom D, it meets (a.1.1); if L contains Axiom E, it meets {a.1.2,
and if L contains Axiom F, it meets (a.2). Thus the canori, ,;
a-model for CO is standard, the canonical a-model for C1 s
standard, and the canonical a-model for C2 is 2-standard,

|
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i L is any deductive system closed under TI and DWC and

-taining Axioms A-—C, so that the canonical e-model for L
_.uandard, then let us call the f-conversion of the canonical

~odel for L the canonical f-model for L, and let us call the
:\mnversion of the canonical «-medel for L the cancnical y-model
.+ 1. The three canonical models for L are equivalent; and if the
sonical e-model for L is 1-standard or 2-standard, then so are
- other two canonical models for L.

Completeness resulis

<.y sentence is valid in every member of some class of models
.t includes one of the canonical models for a deductive system
" then that sentence belongs to every maximal L-consistent set
B ,entences, so it must be a theorem of L. By this argument
. cther with our resufts about standardness of canonical models
; our soundness results, we have now proved the following
. corem. (The third part restates a result of Stalnaker and

“iumason [5].)
T OREM
(x
. and anly theorems of CO are valid in all standard | B\-models;

-models;

Land only theorems of C1 are valid in all 1-standard

~models.

T R N wa X

and only theorems of C2 are valid in all 2-standard

ury

Decidability results

ye can now also show that the systems CO, Cl, and C2 are
Gecidable. If L is one of these systems and ¢ is any senténce,
-roceed as follows to decide whether ¢ is a theorem of L. First
i?mase a set J with exactly 2" members, where n is the number of
cshsentences of ¢ (including ¢ itself). Then consider the set M
v all fomodels {1, | ], 8> such that: [1) I&); (2} [o]= A whenever
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7 is a sentence letter that does net occur in g; and (3) ¢f [1

Is standard (if I is C0), 1-standard (if Lis C1), or 2-standard (i ; Rderem,es , : :
s C2). There are finitely many models in M, and each of then, Davio K”L“}' Rem;v [c.)f‘,sal.d Kr;pz;el’ ggg’;nmafzzmlg; of modal logic
such that we can decide whether ¢ is valid in jt. If ¥ is valig .- {[)A:ielf,:Z::.aCi{;iizzer;ﬁa:ﬁfcfnvir‘epar[atIon.! PP R,
every model in M’ decide that Pisa theorem of L; if @ is vyl © KaisTER SEGERPERG. “Decidability of $4.1.* Theoria, vol. 34 (1968, pp. 7—20.
in some model in M, decide that @ is not a theorem of L. ¢ Rozerr STALNAKER. “A theory of conditionals.” In Nicholas Rescher (ed},
If % 15 a theorem of L, it follows from our soundnesg resuf:, studies in logical theory. American Philosophical quarterly supplementary
. that ¢ is valid in every model in M, so in thig case the proceduy;, monograph series (Oxford: Blackwel, 1968).

© ROBERT STALNAKER AND Ricumonn Tromason. “A semantic analysis of condi-

decides CorreCﬂy' uonal togic.” Theoria, vol, 35 {1970), pp. 23—42,

If ¢ is not a theorem of L, it follows from our completen,. , _
results that ¢ is invalid in some f-model ¢J [ ], 8> which is Starl & ed on December 21, 1970,
ard (if L is C0}, I-standard {if L is Cl1), or 2-standard (fLis¢n

V.
true in that model at both or neither of i and j. Call A BN
a g-hltration of (I | L 8 iff it is a f-mode] and there is a functie,
from I into J such that: (1) *f={x;. i€l (2) *i=xj iff § apg.
are apwindistinguishab]e; (3)if o is any sentence letter that ocy:,
ing, o] ={x ¢ fal}; (4) if o is any sentence letter that does N
oceur in g, "fo] = A; and (5) for each j in *I there is 110 { such (),
j=xiand"$;={{xh b € S}:5 €8} We can easily verify that thes,
do exist p-filtrations of {111, $>. We can verify by induction .-
subsentences of p that if y js any subsentence of p {in particul,;
ifyisg itself} and <"1, 7| 1, 8> is any p-filtration of {I [} 55 the:
Twl={xi:i €[]} 1¢ follows that ¢ is invalid in any g-filtratioy ..
our original model ¢J, | L $>. We can also verify that if s
is standard, I-standard, or Z-standard, then so is any g-hitrat, -
of it. {To verify that Z-standardness is preserved, we should firoe
note that if ¢*J, T1L$ is any g-filtration and ¥ is any senteq,,
there is a truth-functional compound y of subsentences of ,
such that Tol="x] and for any such x, "[y]={x: j ¢ (2l o
follows that the g-hltrations of our original model (J 1], »

This completes the proof of the following theorem. 3 S

THEOREM
CO, CL, and C2? are decidable.




