
The Logic of Provability

David Hilbert1 started a program he called “metamathematics,” which treats

mathematical proofs as objects of mathematical study. Previously, mathematicians studied such

things as prime numbers, Fourier series, and conic sections. Now mathematicians study all those

things and they also study mathematical proofs. The program was enormously frutiful. Its most

dramatic results were the Gödel incompleteness theorems.2 What we would like to do here is to

conceptualize metamathematical results in terms of modal logic, interpreting “~ n” as saying

that there is a proof of n.

Setting Things Up

The mathematical theories we’ll talk about are all theories about the natural numbers,

although the results we discuss are applicable much more widely. They apply to languages into

which the basic laws of arithmetic are codable somehow.  The language of arithmetic has as its

nonlogical symbols “0”, “S” (for successor), “+,” “@,” and “<,” The main arithmetical theory

we’ll talk about is Peano Arithmetic (PA) whose axioms are:

(œx) ~ Sx = 0.

(œx)(œy)(Sx = Sy 6 x = y).

(œx)(x + 0) = x.

(œx)(œy)(x + Sy) = S(x + y).. 367-392.

(œx)(x @ 0) = 0.

1“On the Infinite” in Jean van Heijenoort, ed., From Frege to Gödel (Harvard University
Press, 1967), pp

2“On Formally Undecidable Propositions in Principia Mathematica and Related Systems
I” in From Frege to Gödel, pp. 592-617.
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(œx)(œy)(x @ Sy) = ((x @y) + x).

(œx) ~ x < 0.

(œx)(œy)(x < Sy : (x < y w x = y)).

Sentences (formulas without free variables) obtained form the following induction

axioms schema by substituting an arithmetical formula for “R” and prefixing

universal quantifiers to bind any free variables that result:

((R0 v (œx)(Rx 6 RSx)) 6 (œx)Rx)

Virtually any argument that looks like ordinary, rigorous arithmetical reasonng can be

formalized within PA. It’s easy, once you get the knack.

We want to lay out some ideas from computability theory/ Where τ is an arithmetical

term, we use (œx < τ)n as an abbreviation for (œx)(x < τ 6 n) and (›x < τ)n for (›x)(x < τ v n).

“(œx < τ)” and “›x < τ)” are the bounded quantifiers. The bounded formulas are the smallest

collection of expressions that contains the atomic formulas and is closed under “w,” “v,” “~,”

and bounded quantification. The Σ formulas are obtained by prefixing existential quantifiers to

bounded formulas.  A cornerstone of computability theory is the Church-Turing thesis: A partial

function (a function from a subset of ùn to ù) is calculable iff it’s the extension of a Σ formula.

A property or relation is effectively enumerable iff it’s the extension of a Σ formula. 

Every true Σ sentence is provable in PA; this is “Σ completeness,” which can be stated an

proven within PA. Every effectively enumerable set S is weakly representable in PA, that is,

there is a formula σ(x) so that, for each n, PA / σ([n]) iff n 0 S. Here [n] is the numeral for n, the

result of writing n “S”s before “0.” Every decidable set R is stronly represntable in PA, that is,

there is a formula ρ(x) such that, for any n, in n 0 R, PA / ρ([n]), and if n ó R, PA / ~ ρ([n]).
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Every calculable total function f is functionally representable in PA, that is, there is a formula

F(x,y) such that, for any n, PA / (œy)(F([n],y) : y = [f(n)]).

The breakthrough in metamathematics came with Gödel, who worked out the details of

associating numerical codes with formulas and proof in such a way the important syntactic

properties of expression of the language are correlated with  decidable arithmetical properties of

their codes. The number + n , is the code of the formula n. Where Γ is a recursively axiomatized

theory (that is, there is an algorithm for telling whether a formula is an axiom), BewΓ([+ n ,]) is

the Σ sentence that says that there is a proof in Γ of n.  (“Beweis” is German for “proof.)

The Incompleteness Theorems

The following result, which is the crucial move in Gödel’s results, has always seemed a

little bit magical to me:

Self-Reference Lemma.  For any formula ψ(x) there is a formula n such that

(n : ψ([+ n , ]) is a theorem of PA.

We can think of n as talking about itself, saying “I have property ψ.”

Proof: Let d be the following calculable function:

If m has the form θ(x), d(m) = + θ([m]).

Otherwise d(m) = 0.

d is calculable, so there is a formula D that functionally represents it. Let χ(x) be the formula

(›y)(D(x,y) v ψ(y)), let m = +χ(x),, and let n = χ([m]), so that + n , = d(m).  In PA, we can prove

the following:

(œy)(D([m],y) : y = [+ n ,]).
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((›y)(D([m],y) v ψ(y)) : ψ([+ n ,])).

(n : ψ([+ n ,])).:

Gödel actually wrote out the formula D(x,y), rather than just claiming there has to be such a

formula because d is calculable. 

Use the Self-Reference Lemma to find a sentence γ, the “Gödel sentence,” such that (γ :

~ BewΓ([+ γ ,]) is provable in PA. If there is a proof in Γ of γ, there is a proof in Γ of 

“~ BewΓ([+ γ ,]).” But also, since “BewΓ” weakly represents provability in Γ, if there is a proof in

Γ of γ, there is a proof in PA, and hence a proof in Γ, of “BewΓ([+ γ ,]).”  So if γ is provable in Γ,

Γ is inconsistent. 

 If the negation of γ is provable in Γ, then you can prove in Γ that there is a proof in Γof

γ. But, unless Γ is inconsistent, there really isn’t a proof in Γ, and for each n, you can prove that

n isn’t the code number of a proof in Γ of γ. A theory is said to be ω-inconsistent iff there is a

formula θ(x) such that the theory proves θ([n]) for each n, but it also proves (›x)~ θ(x). If γ is

refutable in Γ, Γ is ω-inconsistent. This was the original version of Gödel’s first incompleteness

theorem: If Γ is ω-consistent, then there is a sentence that’s undecidable in Γ, namely γ. Shortly

afterward, Barclay Rosser3 showed how to strengthen Gödel’s result to this: In Γ is consistent,

then there is a sentence that’s undecidable in Γ.

We have a proof that is Γ is consistent, then γ isn’t provable in Γ. We can restate this

arithmetically, writing “CON(Γ)” to abbreviate “~ BewΓ([+ ~ 0 = 0 ,])”:

CON(Γ) 6 ~ BewΓ(+ γ ,).

3“Extensions of some Theorems of Gödel and Church,” Journal of Symbolic Logic I
(1936), pp. 231-235.
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Hence,

CON(Γ) 6 γ.

We can formalize this as a proof in Γ. So if we had a proof in Γ of CON(PA), we could get a

proof in Γ of γ, and we know this is only possible if Γ is inconsistent. This is Gödel’s

secondhenkin incompleteness theorem: No consistent, recursively axiomatized extension of PA

can prove its own consistency.

Löb’s Theorem

Gödel showed that the sentence that says “I am not provable in PA” is true but not

provable in PA. Leon Henkin4 asked, “What about the sentence that says “I am provable in PA.”

M. H. Löb5 answered his question: It is true and provable.

Theorem (Löb). For Γ a recursively axiomatized extension of PA, (Bew([+ n ,]) 

6 n) is provable in Γ if and only if n is provable in Γ.

Proof: The right-to-left direction is obvious. Our method of proving the left-to-right is due to

Kripke. Suppose n isn’t provable in Γ. Then Γ c {~ n} is consistent. Then by the second

incompleteness theorem, CON(Γ c {~ n}) isn’t provable in Γ c {~ n}. We can reformulate this

arithmetically:

Γ c {~ n} /D± ~ BewΓc{~n}([+ ~ 0 = 0 ,]).

Γ c {~ n} ±/ ~ BewΓ([+ (~ n 6 ~ 0 = 0) ,]).

Γ c {~ n} /± ~ BewΓ([+ n ,]).

4“A Problem Concerning Provability,” Journal of Symbolic Logic 17 (1952), p. 160.

5“Solution of a Problem of Leon Henkin,” Journal of Symbolic Logic 20 (1955): 115-118.
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Γ ±/ (~ n 6 ~ BewΓ([+ n ,])).

Γ /± (BewΓ([+ n ,]) 6 n).:

Translating Gödel and Löb’s Results into Modal Terms

Gödel and Löb discovered the main structural features of the logic of provability. We

would like to explicate their discoveries in modal terms, interpreting “~” as “BewΓ.” Given Γ a

recursively axiomatized extension of PA let’s define a Γ-interpretation of our language for the

modal sentential calculus is a function i that associates an arithmetical sentence with each modal

formula, subject to the following constraints:

i (φ w ψ) = (i(φ) w i(ψ))

i (φ v ψ) = (i(φ) v i(ψ))

i (φ 6 ψ) = (i(φ) 6 i(ψ))

i(~ φ) = ~ i(φ)

i(~ φ) = BewΓ([+i(φ),])

A modal formula φ is always provable in Γ iff, for each Γ-interpretation i, i(φ) is provable in Γ. φ

is always true for Γ iff, for each Γ-interpretation i, i(φ) is true in the standard model ù.

Löb isolated three conditions that capture the structural features of provability that

underlie Gödel’s second incompleteness theorem. Löb’s condition (L1) tells us that the set of

always-provable formulas is closed under Necessitation:

(L1) If Γ / n, PA / BewΓ([+ n ,]).

 (L2) tells us that the instances of (L1) are provable:

(L2) PA / (BewΓ(+ n ,) 6 BewΓ([+ BewΓ([+ n ,]) ,])).
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(L3) tells us that the instances of schema (K) are always provable:

(L3) PA / (BewΓ([+ (n 6 ψ) ,]) 6 (BewΓ([+ n ,]) 6 BewΓ([+ ψ ,]))).

Since the set of always-provable sentences is closed under (TC), we conclude that the set of

always-provable sentences is a normal modal system that includes K4.

Löb’s Theorem tells us that all instances of the following schema are always true:

(L) (~(~ φ 6 φ) 6 ~ φ)

The proof of Löb’s Theorem can be formalized in Γ, with the consequence that the instances of

schema (L) are always provable. If we let GL (for “Gödel-Löb”) be the smallest normal modal

system that includes both (4) and (L), we see that the set of always-provable sentences includes

GL. Dick de Jongh has shown that including schema (4) is redundant, so that GL can

alternatively be characterized as the smallest normal modal system that includes (L).

The set of modal formulas always-provable in Γ is a normal modal system that includes

GL. Is it, in fact, identical to GL? That depends on Γ. The second Gödel incompleteness theorem

tells us that no consistent, recursively axiomatized theory proves its own consistency. So  PA c

{~ CON(PA)} is consistent. If we take Γ to be PA c {~ CON(PA)}, Γ, though consistent,

contain a “proof” of its own inconsistency.  “~(P v ¬ P)” is always provable in Γ, but it isn’t in

GL. 

To get an exact matchup between being a theorem of GL and being always provable in Γ,

we need to require more of Γ than just that it be consistent. Earlier we stipulated that an

arithmetical theory is ω-inconsistent iff there is a formula n(x) such that the theory proves n([n])

but it also proves (›x)~ n(x). Let’s say that the theory is 1-inconsistent if the formula n(x) is Σ.
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Any inconsistent theory is 1-inconsistent, but PA c {~ CON(PA)} is consistent but 1-

inconsistent.

With this definition in hand, we can state the main theorem in provability logic, which is

due to Robert Solovay6:

Theorem (Solovay). If Γ is a 1-consistent, recursively axiomatized extension of

PA, a modal formula is always provable in Γ if and only if it’s in GL.

The right-to-left direction follows from (L1), (L2), (L3), and Löb’s theorem. Proving the left-to-

right direction will be a major undertaking. Before setting out, let’s spend a little time exploring

the relation between “~” and “Bew.” Take Γ to be a recursively axiomatized extension of PA.

Until further notice, we’ll take “Bew” to mean “BewΓ”; “always provable” will mean “always

provable in Γ.” Define the arithmetical frame for Γ to be the pair <W,R> where W is the

collection7 of models of Γ and we stipulate that wRv iff, whenever Bew([+ ψ ,]) is true in w, ψ is

true in v. We have the following:

Theorem. For any arithmetical sentence n and world w, Bew([+ n ,]) is true in w

if and only if n is true in every world accessible from w.

Proof: (Y) is immediate. To get (Z), suppose that Bew([+ n ,]) isn’t true in w. We want to

construct a world accessible from w in which n is false. In other words, we want to construct a

model of Γ c {¬ n} c {ψ: Bew([+ ψ ,]) is true in w}. Suppose, for reductio, that there is no such

6 “Provability Interpretations of Modal Logic,” Israel Journal of Mathematics 25 (1976):
287-304. The definitive exposition of provability logic is George Boolos, The Logic of
Provability (Cambridge: Cambridge University Press, 1995).

7A technical issue we’ll ignore is that, in term of standard set theory, W won’t be a set,
but a proper class.
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model. Then by compactness, there exist sentences ψ1, ψ2,... ψn, with each Bew([+ ψi ,]) true in w,

such that Γ c {¬ n} c {ψ1, ψ2,..., ψn} is in inconsistent. Consequently,

Γ / (ψ1 6 (ψ2 6 ... 6 (ψn 6 n)...)).

By (L1),

Γ / Bew([+ (ψ1 6 (ψ2 6 ... 6 (ψn 6 n)...)) ,]).

Using (L3) multiple times:

Γ /  (Bew([+ ψ1 ]) 6 (Bew([+ ψ2 ,]) 6 ... 6 (Bew(+ ψn ,]) 6 Bew([+ n ,]))...)).

This conditional and each of the Bew([+ ψi ,])s are true in w. So Bew([+ n ,]) is true in w.

Contradiction.:

 The worlds  are those models of the language or arithmetic in which all the theorems of

Γ are true. If Bew([+ n ,]) is true in w, then w thinks that n is a theorem of Γ. If v is a model of

the language of arithmetic in which n is false, w won’t regard v as a genuine world. This can

happen even if Bew([+ n ,]), though true in w, is false in the standard model and v really is a

possible world. A possible world – that is, model of Γ– is accessible from w only if w recognizes

it as a model of Γ.

Given an arithmetical interpretation i of the modal language, define an interpretation Ii of

the arithmetical frame <W,R> by stipulating that, for α an atomic modal formula, Ii(α,w) = 1 iff

i(α) is true in w. The theorem enables us to prove that, for any arithmetical interpretation i and

modal formula n, n is true in the model <W,R,Ii,w> iff i(n) is true in the model w for the

language of arithmetic. n is always provable iff for every arithmetical interpretation i and world

w, n is true in <W,R,Ii,w>, which happens iff, for every arithmetical interpretation i and world

w, i(n) is true in w.
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If Γ is true, then the standard model is one of the worlds in W, and it has access to itself

and every other world. A modal formula n is always true iff, for every arithmetical interpretation

i, n is true in <W,R,Ii,ù>, which happens iff, for every arithmetical interpretation i, i(n) is true in

ù.

Possible-world Semantics for GL

We now want to set all the arithmetical stuff aside for a while and just think about GL as

a system of axioms for the modal sentential calculus. The aim is to understand GL in terms of

possible-world semantics. We begin with a definition and a theorem:

Definition. A binary relation R on W is well-capped iff, any nonempty subset X

of W has an R-maximal element, that is, an element of X that doesn’t bear R to 

any element of x.

Equivalently, <W,R> is well-capped iff there is no infinite R-sequence w0 R w1 R w2 R w3 R....

Theorem. Assuming “P” is an atomic sentence of our modal language, the

following are equivalent, for any uninterpreted frame <W,R>:

(i) R is transitive and well-capped.

(ii) All the sentences in GL are valid for <W,R>.

(iii) The formulas “(~P 6 ~ ~ P)” and “( P 6 (P v ¬  P))” are valid for <W,R>.

Proof: (i) implies (ii): We already know that, if R is transitive, all the instances of (4) are valid

for <W,R>. We now want to see that, if R is transitive and well-capped, all the instance of (L)

are valid for <W,R>. You can prove in K that (L) is equivalent to ( ¬ n 6 (¬ n v ¬  ¬ n)).
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Suppose  ¬ n is true in world w. Let X be the set for worlds accessible from w in which ¬ n is

true. The X has an R-maximal element v. v is a world accessible from w in which (¬ n v 

¬  ¬ n) is true. Thus we know that the set of sentence valid for <W,R> is a normal modal

system that includes (4) and (L). It follows that it includes GL.

(ii) implies (iii): Immediate, since the formulas are both in GL.

¬ (i) implies ¬ (iii). We have already seen how, if R isn’t transitive, we can find a model

<W,R,I,@> in which “(~ P 6 ~ ~ P)” is false. Let’s suppose that R isn’t well-capped, so that

there is an infinite R-sequence  w0 R w1 R w2 R w3 R.... Define the interpretation I so that

I(“P”,x) = 1 iff x is one of the wis; it doesn’t matter what I does with the other atomic sentences.

Because “P” is true in w1, “P” is true in w0. Any world accessible from w0 in which “P” holds

will be wi for some i, and it will have access to a world in which “P” holds, namely wi+1. So “(P

v ¬ P)” is false in w.:

We now want to show that a sentence is in GL if and only if it’s true in every model in

which the accessibility relation is transitive and well-capped. We just proved the left-to-right

direction (soundness). We still have to prove the right-to-left direction (completeness).

We have a standard method for proving completeness theorems for normal modal

systems, namely, looking at the canonical frame. This method won’t work with GL. GL being

normal, it has a canonical frame <W,R,I>. If χ isn’t in GL, then there is a world @ in the

canonical frame in which χ is false. So far, so good, but now the proof breaks down. The

canonical frame of <G,L> isn’t well-capped. To see this, pick a PA-interpretation i, and consider

the arithmetical frame <W,R> for PA. ù is a world in W that has access to every world. In

particular, it has access to itself. So the set of formulas true in <W,R,Ii,ù> includes all the
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formulas of the form (~ n 6 n) and also all the formulas in GL. So GL c {instances of (T)} is

truth-functionally consistent. So there is a world @ in the canonical frame for GL that includes

all the instances of (T). We have @ R @ R @ R @ R ....

We can still prove the completeness theorem, but we have to do it in a roundabout way,

by showing the following are equivalent:

(i) χ is in GL.

(ii) χ is true in every model in which the accessibility relation is transitive and well-

capped.

(iii) χ is true in every model in which the accessibility relation is a finite partial order,

that is, a finite relation that is antireflexive (no world has access to itself) and

transitive.

Actually, it will be useful to prove something further. Define a tree to be a partial order that

meets two extra conditions:

There is a least member.

Branch-connection: If Ruw and Rvw, then either Ruv or u=v or Rvw.

The paradigm case of a finite true is a nonempty, finite set of finite sequences, with the property

that every initial segment of a member of the set is a member of the set. Ruv holds if and only if

v extends u. A tree model is a model <W,R,I,@> in which <W,R> is a tree with @ as its least

element.

Theorem. For χ a modal formula, the followin are equivalent:

(i) χ is in GL.

(ii) χ is true in every model in which the accessibility relation is transitive and well-
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capped.

(iii) χ is true in every model in which the accessibility relation is a finite partial order.

(iv) χ is true in every finite tree model.

Proof: We’ve already shown that (i) implies (ii). It’s evident that (ii) entails (iii) and (iii) entails

(iv). We want to show that the negation of (i) entails the negation of (iii). Later we’ll worry

about the path from (iv) to (iii).

Suppose that χ isn’t in GL. We want to construct a finite tree model <W,R,I,@> in which

χ is false. The construction we’ve used in the past, with maximal consistent sets of sentences,

won’t give us a finite tree. To keep everything finite, we don’t look at all the sentences, but only

at the sentences that are either subsentences of χ or negations of subsentences of χ. Since χ isn’t

an element of GL, we can find a set of sentences @ with the following properties:

¬ χ is an element of @.

@ is GL-consistent.

Every member of @ is either a subsentence of χ or the negation of a subsentence

of χ.

For each subsentence of χ, either it or its negation is in @.

To form @, we go through the subsentences of χ. When we come to a sentence, we add either it

or its negation to our set, preserving GL-consistency.

Let W be the set of all maximal GL-consistent sets of subsentences of χ and negated

subsentences of χ. That is, a set of sentences is in W iff it meets the last three of the four

conditions above. If w is an element of W and α is an atomic sentence that occurs in χ, we’ll set
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I(α,w) = 1 iff φ 0 w. The tricky part is defining the accessibility relation R. Here’s the definition:

w R v iff the following two conditions are met:

For any sentence ~φ that’s an element of w, both ~ φ and φ are elements of v.

There is a sentence θ such that ~θ is in v, but ~θ isn’t in w.

This stipulation makes <W,R> into a finite partial order. The second clause is a brute force

method of guaranteeing antireflexivity.

The proof that, for any sentence ψ that’s a subsentence of χ, ψ is true in w in the model

<W,R,I,@> iff ψ is an element of w is routine, except for one part. We need to show that, if ~ψ is

a subsentence of χ that isn’t in w, then there is a v with wRv that doesn’t contain ψ. So v will

have to contain ~ ψ and all the sentences n and ~ n with ~ n in w, and it will also have to

contain some sentence that begins with a “~” that’s isn’t in w. The sentence we’ll use for this

purpose is ~ψ.To prove the existence of such a v, we need to show that  {~ψ, ~ψ} c {(φ v ~ n):

~φ 0 w} is GL-consistent. Suppose it isn’t, so that, for some n1, n2,...., nn with each ~ni in w, 

GL implies:

((~φ1 v φ1) 6 ((~φ2 vφ2) 6...6 ((~φn v φn) 6 (~ψ 6 ψ))...)),

Because GL is normal, the following sentence is in GL:

(~(~φ1 v φ1) 6 (~(~φ2 vφ2) 6...6 (~(~φn v φn) 6 ~(~ψ 6 ψ))...)).

 Because GL includes K4, (~φi 6 ~(~φi v φi)) is in GL, for each i, and also, because GL includes

(L), (~(~ψ 6 ψ) 6 ~ψ) is in GL. Consequently, the following sentence is in GL:

(~φ1 6 (~φ2 6...6 (~φn 6 ~ψ)...)).

Because each of the ~φis is in w, ~ψ is in w. Contradiction.
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We still need to show that (iii) implies (iv). Suppose that R is a finite partial order on a set

W and that χ is false in <W,R,I,@>. Let W† be the set of all finite sequences beginning with @

with the property that each member of the sequence bears R to the next member of the sequence,

if there is one. Sequence s bears R† to sequence t iff s is a proper initial segment of t. I†(α,s) = I(α,

the last member of s). An easy induction shows that, for each formula n and sequence s in W†, n

is true in <W†,R†,I†,s> iff n is true in <W,R,I, last member of s>. In particular, χ is false in the

finite tree model <W†,R†,I†,<@>>.:

This theorem gives us a decision procedure for GL. If a sentence is in GL, we can derive

it, whereas if a sentence is outside GL the proof of the theorem shows us how to construct a finite

tree model in which it’s false.

GL = {Always-provable Formulas}

Now we’re ready for the big time. Given a sentence χ that’s not in GL, we want to find a

Γ-nterpretation i such that i(χ) isn’t a consequence of Γ. We can find a finite tree model

<W,R,I,@> in which χ is false. We can emumerate the members of W as w1, w2,..., wn, listed in

such a way that i < j whenever wi R wj. Thus @ = w1. We expand the model by adding w0 as an

extra world, stipulating that every other world is accessible from w0 and that I(α,w0) = I(α,w1), for

α atomic. At the end of the day, when we get our Γ-interpretation, world w0 will play the role of

the actual world, that is, the standard model. The sentences true in world w1 might or might not be

true in the standard model; we don’t want to presume. When we turn to the logic of almost-truth,

world w0 will play a starring role.



Provability Logic, p. 16

Our plan is looking for a Γ-interpretation that reproduces the structure of the tree is

reminiscent of the strategy we use in plain sentential calculus to see how to find an SC sentence

with a given truth table. What we did there was to find, for each line of a truth table, a sentence,

the state description, that described that line, then to take our sentence to be the disjunction of the

state descriptions of the lines at which the given truth table assigns the value “true.” Pursuing the

same plan here, we want to find, for each world wj, a sentence σj that describes that world. Once

we’ve done that, we can take our arithmetical interpretation to be the function that assigns to each

atomic formula the disjunction of the world-descriptions of the worlds in which the formula is

true. Specifically, we find, for each j # n, a sentence σj meeting these conditions:

(i) PA / ( »0#j#n
σj).  (“»” denotes a disjunction.)

(ii) PA / ~ (σj v σk), for j … k.

(iii) PA / (σj 6 ~ Bew ([+ ~ σk
,])), whenever wj R wk.

(iv) PA / (σj 6 Bew([+ »wjRwk
 σk ,])), for 1 # j # n.8

(v) PA / (1-CON(Γ) 6 σ0).

Defining our Γ-interpretation i by stipulating that, for φ atomic,  i(φ) is  the disjunction of the σjs,

for j a world in which φ is true, gives us the following:

Claim. For any j, 1 # j # n, and any modal formula φ, if φ is true in wj, then

 PA / (σj 6 i(φ)).

Proof: We prove by induction on the complexity of formulas that, for each formula φ, if φ is true

in wj, then PA / (σj 6 i(φ)), whereas if φ is false in wj, PA / (σj 6 ¬ i(φ)). If φ is atomic, then if φ

8 In case there aren’t any worlds accessible from j, let me stipulate that I’ll take the
“disjunction” of the σjs with Rjk to be the logically inconsistent sentence “~ 0 = 0.” So (iv) tells
us that, if there aren’t any world accessible form j, PA / (σj 6 ~ Con(Γ)).
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is true in wj, σj is one of the disjuncts of i(φ), whereas, if φ is false in wj, condition (ii) assures us

that σj is provably incompatible with each of the disjuncts of σj. In case φ is built up from simpler

formulas by means of the SC connectives, the proof is easy and I won’t go through it here. Here

let’s worry instead about showing that the claim holds when φ has the form ~ψ.

Let’s say the worlds accessible from wj are wk1
, wk2

,..., wkm
. If ~ψ is true in wj, then by

inductive hypothesis, for each h, 1 # h # m, PA / (σkh
 6 i(ψ)). So PA / ((σk1

 w σk2
 w...w σkm

) 6

i(ψ)). By (L1) and (L3), PA / (Bew([+(σk1 w σk2 w...w σkm
),]) 6 Bew([i(ψ)]). Since, by (iv),9 PA

/ (σj6 Bew([+(σk1 w σk2 w...w σkm
),])), PA / (σj 6 i(~ψ)).

If, on the other hand, ~ψ is false in wj, then there is a world wk accessible from wj in

which ψ is false. By inductive hypothesis, PA / (σk 6 ¬ i(ψ)).  It follows by (L1) and (L3) that Γ

/ (Bew([+i(ψ),]) 6 Bew([+¬σk
,])), and so PA / (¬ Bew([+¬σk

,]) 6 ¬ i(~ψ)). It follows by (iii) that

PA / (σj 6¬ i(~ψ)).:

Given the Claim, we know that PA / (σ1 6 ¬ i(χ)). It follows by (L1) and (L3) that PA /

(Bew([+i(χ),]) 6 Bew([+¬ σ1
,])), and so, by (iii), PA / (σ0 6 ¬ Bew([+i(χ),])). Since, by (v) and the

hypothesis that Γ is 1-consistent, σ0 is true, it follows that Bew([+i(χ),]) is false, so that i(χ) isn’t a

consequence of Γ.

It remains to find the σjs. Figuring out what formulas to write down took a lot of ingenuity

of Solovay’s part, and I won’t attempt to motivate the construction. I’ll just write the formulas

down and verify that they work. Define a function f(x,y) as follows:

If z isn’t the Gödel number of a formula whose only free variable is “x,” f(y,z) = 0.

9This is where the proof gets stuck for j = 0, since (iv) only applies where 1 # j # n.
When we turn to the logic of always true formulas, we’ll develop a restricted version of the
Claim that applies to world w0.
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Suppose that z is the Gödel number of a formula ψ(x) with “x” as its only free variable We define

f(y,z) by induction on x:

f(0,z) = 0.

If f(m,z) = j and m is a proof in Γ that ends in ψ([k]) with wj R wk, then f(m+1,z) 

= k.

Otherwise, f(m+1,z) = f(m,z).

If z = +ψ(x),, then in calculating the value of f(y,z) for different values of y, we start at node w0

and make our way up the tree. If, at a certain point, we’re at node wj and we find a proof of

+ψ[k]),, with wj R wk, then we jump to node wk. Because the tree is finite, the jumping will have

to come to a halt eventually.

f is a calculable total function. So we can find encode the recursive definition of f as a Σ

explicit definition, and having done so, we can prove the basic features of f in PA. We can prove

that, for each number p, λyf(y,p), the function taking y to f(y,p), is a nondecreasing total function

whose range is a subset of {0,1,2,..., n}. The plan is to find a particular number p and take σj to be

the sentence, “j is the greatest value output by λy f(y,p).”  If p isn’t the code of a formula with “x”

as its only free varible, λy f(y,p) will be the constant function 0, so identifying σj with “j is the

greatest value output by λy f(y,p)” will give us (i), (ii), (iv), (v), but not (iii). To get all five

conditions, we’ll need the second argument of f to be the code of a formula with “x” as its only

free variable. We want to find an appropriate ψ(x) so that taking σj to be “j is the greatest value

output by λy f(y, + ψ(x) ,)” gives us the five conditions.

Take any formula ψ(x) with “x” as its only free variables.

(i*) PA / »0#j#n
 [j] is the greatest value output by λy f(y,[+ ψ(x) ,]).
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(ii*) For j … k, PA / ¬ ([j] is the greatest value output by λy f(y,[+ ψ(x) ,]) v [k] is the

greatest value output by λy f(y,[+ ψ(x) ,])).

If the greatest value output by λy f(y, + ψ ,) is j, then there is a least number y0 with f(y0, + ψ(x) ,) = j.

There is no number y1 greater that y0 that codes a proof whose last line is ψ([k]) with wj R wk, since

if there were such a number, f(y1, + ψ(x) ,) would be equal to k. If there were a proof of ψ([k]), then

there would be a number greater than y0 that codes a proof that ends in ψ([k]).  The reason will be

familiar to anyone who has stretched out a seven-page paper to fulfill a requirement of  a ten-page

term paper. You pad the paper by adding extra stuff. If you have a proof of ψ([k]),  you can write 

+ ψ([k]) , over and over at the end of the argument, getting proofs with larger and larger Gödel

numbers until you get one whose Gödel number is greater than y0. We can formalize this reasoning

in PA, getting this:

(iii*) PA / ([j] is the greatest value output by λy f(y,[+ ψ(x) ,]) 6 ~ Bew([+ ψ([k])),])) , for

wj R wk.

We also have this:

PA / ( [j] is the greatest value output by λy f(y,[+ψ(x) ,]) 6 (›y)f(y,[+ ψ(x) ,]) = [j]).

Σ-completeness gives us this:

PA / ((›y)f(y,[+ ψ(x) ,]) = [j] 6 Bew([+ (›y)f(y,[+ ψ(x) ,]) = [j] ,])).

Once the function gets to j it either stays there or moves on to some value k with wj R wk:

PA / ((›y)f(y, [ + ψ(x) , ]) = [j] 6 ([j] is the greatest value output by 

λy f(y, [+ ψ(x) ,] w (»wjRwk
[k] is the greatest value output by λy f(y,[+ ψ(x) ,])))).

(L1) and (L3) let us place a “Bew” in front of this and put it through:
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PA / (Bew([+ (›y)f(y, [ + ψ(x) , ] = [j] ,]) 6 Bew([+([j] is the greatest value output by

λy f(y, [+ ψ(x) ,] w (»wjRwk
[k] is the greatest value output by λy f(y,[+ ψ(x) ,])) ,]))).

Putting these results together, we get:

(iv*) PA / ([j] is the greatest value output by λy f(y,[+ ψ ,]) 6 Bew([+([j] is the greatest

value output by λy f(y, [+ ψ(x) ,] w (»wjRwk
[k] is the greatest value output by 

λy f(y,[+ ψ(x) ,])) ,]))).

Now we’re ready to put the pieces together. Use the Self-Reference Lemma to find a formula

σ(x) such that 

PA / (œz)(σ(z) : z is the greatest value output by λy f(y,[+ ¬ σ(x) ,])).

Rewriting σ([j]) as σj, (i*), (ii*), and (iii*) give us (i), (ii), and (iii). Let’s think about (iv).

(iv*) gives us this:

PA / (σj 6 Bew([+ (σj w (»wjRwk
 σk)) ,])).

σj implies (in PA) that j is the greatest value output by λy f(y, + ¬ σ(x) ,), which implies that, for

some y, f(y,+ ¬ σ(x) ,) = j, which implies (given that j … 0) that y is the code of a proof of ¬ σj.

Formalizing this, we get:

PA / (σj 6 Bew([+ ¬ σj ,])).

We get (iv) by formalizing an argument of the form:

(P w Q)

¬ P

ˆ Q
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Finally, we want to prove (v),10 that is, we want to show that, provided Γ is 1-consistent, the

greatest element of {f(y,+~σ(x),): y 0 ù} is 0. Take j with 1 # j # n. (iv) tells us:

PA / (σj 6 Bew([+ »wjRwk
 σk ,])).

For each k, 1 # k # n, we have

PA / (σ([k]) 6 (›y)f(y,[+~σ(x),] = [k])

Therefore,

PA / ((»wjRwk
 σk) 6(»wjRwk

 (›y)f(y,[+ ¬ σ(x),]) = [k])).

PA / ((»wjRwk
 σk) 6 (›y)( »wjRwk

f(y,[+ ¬ σ(x),]) = [k])).

Applying (L1) and (L3) yields:

PA / (Bew([+ »wjRwk
 σk ,]) 6 Bew([+ (›y)( »wjRwk

f(y,[+ ¬ σ(x),]) = [k] ,]))).

Using (iv),

($) PA / (σj 6 Bew([+ (›y)( »wjRwk
f(y,[+ ¬ σ(x),]) = [k] ,]))).

σj tells us that j is the greatest value output by λy f(y, + ¬ σ(x) ,), so that, if wj R wk, there isn’t

any y with f(y, + ¬ σ(x) ,) = k. Formalizing this reasoning in PA, we get, for each k with wj R wk,

PA / (σj 6 ¬ (›y)f(y,[+ ¬ σ(x) ,]) = [k]).  

PA / (σj 6 ¬ (›y)(»wjRwk
 f(y,[+ ¬ σ(x) ,]) = [k]).

PA / (σj 6 (œy) ¬ (»wjRwk
 f(y,[+ ¬ σ(x) ,]) = [k]).

Σ-reflection tells us the following, since ¬ (»wjRwk
 f(y,[+ ¬ σ(x) ,]) = [k]) is provably equivalent

to a Σ formula:

10 If we were assuming that Γ were true, instead of merely that it’s ω-consistent, proving
(v) would be a piece of cake. For j > 0, σ([j]) asserts its own refutability, so that, if it were true, it
would be a true refutable sentences. However, we are not assuming that Γ is true, so there may
well be true sentences that are refutable in Γ. So we have more work to do.
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PA / (œy)(¬ (»wjRwk
 f(y,[+ ¬ σ(x) ,]) = [k]) 6 Bew([+ ¬ (»wjRwk

 f([y],[+ ¬ σ(x) ,]) 

= [k]) ,])).

Putting these together, we get:

(¢) PA / (σj 6 (œy) Bew([+ ¬ (»wjRwk
 f([y],[+ ¬ σ(x) ,]) = [k]) ,]))).

($) and (¢) yield:

PA / (σj 6 ¬ 1-CON(Γ)).

This holds for every j, 1 # j # n. Hence by (i):

PA / (¬ σ0 6 ¬ 1-CON(Γ)).

This is the contrapositive of (v).:

GLS = {Always-true Formulas}

We now turn out attention to problem of determining which modal formulas are always true.

Assuming that Γ is true, every always-provable formula will be always true, but not every always-true

formula will be always provable, for all the instances of schema (T) will be always-true, but only those

with always-provable consequents will be always provable. It turns out that these two observations,

together with the recognition that the always-true formulas are closed under tautological consequence,

is enough to give us a complete inventory of always-true formula.

Let GLS (for “Gödel-Löb-Solovay”) be the smallest collection of formulas that includes GL

and all the instances of schema (T) and is closed under tautological consequence.

Theorem (Solovay). Given a modal formula χ, let the subformulas of χ that begin with

“~” be ~η1, ~η2,..., ~ηm. The following are equivalent:

Î χ 0 GLS.
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Ï (((~η1 6 η1) v (~η2 6 η2) v...v (~ηm 6 ηm)) 6 χ) 0 GL.

Ð χ is always true.

Proof: That Ï implies Î and that Î implies Ð are obvious (given Löb’s theorem), so all we need to

show is that Ð implies Ï. Actually, we’ll show that the negation of Ï implies the negation of Ð. If the

conditional (((~η1 6 η1) v (~η2 6 η2) v...v (~ηm 6 ηm)) 6 χ) isn’t in GL, we follow the same procedure

as before to find a model <{w0, w1,..., wn},R,I,w0> in which the conditional is false at world w1. We

want to show that a subformula of χ is true in world w0 if and only if it’s true at world w1. For atomic

formulas, this follows immediately from the way we, thinking ahead, stipulated truth values when

extending the model to include world w0. For conjunctions, disjunctions, conditionals, biconditionals,

and negations, the proof is easy. If ~ηj is true in world w0, then ηj is true in every world accessible

from w0. Since every world accessible from world w1 is accessible from world w1, it follows that ηj is

true in every world accessible from world w1, and so ~ηj is true in world w1. If, on the other hand, ~ηj

is true in world w1, then ηj is true in every world accessible from world w1. The only world accessible

from w0 that isn’t accessible from w1 is w1 itself. Since (~ηj 6 ηj) is true in w1, ηj is true in true in w1,

and thus true in every world accessible from w0, so that ~ηj is true in w0. 

In particular, since χ is false in w1, χ is false in w0.

We now want to show that, for each subsentence θ of χ, if θ is true in w0, PA / (σ0 6 i(θ)),

whereas if θ is false in w0, PA / (σ0 6 ¬ i(θ)). Since σ0 is true, it will follow that i(χ) is false, as

required.

The proof for θ atomic is the same as the proof we gave earlier for worlds 1, 2,..., n. The proof

for θ a disjunction, conjunction, conditional, biconditional, or negation is routine. 
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Suppose that ~ηj is true in w0. For each k > 0, wk is accessible from w0, and so ηj is true in wk.

We showed earlier that this shows that PA / (σk 6 i(ηj)). Since ηj is true in w1 and the same

subsentences of χ are true in w0 and in w1, ηj is true in w0, and so, by inductive hypothesis, PA / (σ0 6

i(ηj)). It follows that PA / ((σ0 w σ1 w...w σn) 6 i(ηj)). Since PA / (σ0 w σ1 w...w σn), we have PA / i(ηj).

By (L1), PA/  Bew([+i(ηj),]), that is, PA / i(~ηj), and so PA / (σ0 6 i(~ηj)).

Now suppose instead that ~ηj is false in w0. Then there is a world wk with k > 0 in which ηj is

false. We showed earlier that this implies that PA / (σk 6 ¬ i(ηj)). Applying contraposition, (L1), (L3),

and contraposition again, we obtain PA / (¬Bew([+¬σk
,]) 6 ¬i(~ηj)). Since (iii) gives us PA / (σ0 6

¬Bew([+¬σk
,])), it ollows that PA / (σ0 6 ¬i(~ηj)).:

From the equivalence of Ï and Ð and the existence of a decision procedure for GL, we see that

there is an algorithm of testing whether a modal formula is always true.


