Rules of Intuitionistic Natural Deduction

 \downarrow_{Int} is the smallest relation relating sets of sentences to sentences that meets the following conditions:

Identity If $\gamma \in \Gamma$, then $\Gamma \mid_{\operatorname{Int}} \gamma$.

Transitivity If $\Gamma \mid_{Int} \delta$ for each member δ of Δ and $\Delta \mid_{Int} \phi$, then $\Gamma \mid_{Int} \phi$.

"\"-introduction $\{\phi,\psi\} \ \big|_{Int} (\phi \wedge \psi).$

 $\text{``}\wedge\text{''}\text{-}\textit{elimination} \qquad \qquad \{(\phi \wedge \psi)\} \ \big|_{Int} \ \phi \ \text{and} \ \{(\phi \wedge \psi)\} \ \big|_{Int} \ \psi.$

"\"-introduction $\{\phi\} \mid_{Int} (\phi \lor \psi), \text{ and } \{\psi\} \mid_{Int} (\phi \lor \psi).$

 $Proof \ by \ cases \qquad \qquad If \ \Gamma \cup \{\phi\} \ \mid_{Int} \theta \ and \ \Gamma \cup \{\psi\} \ \mid_{Int} \theta, \ then \ \Gamma \cup \{(\phi \lor \psi)\} \ \mid_{Int} \theta.$

Modus ponens $\{\phi (\phi \rightarrow \psi)\} \mid_{Int} \psi.$

 $\textit{Conditional proof} \qquad \qquad \text{If } \Gamma \cup \{\phi\} \ \big|_{Int} \, \psi, \, \Gamma \ \big|_{Int} \, (\phi \rightarrow \psi).$

Ex contradictione quodlibet $\{\bot\}$ $\vdash_{Int} \chi$, any χ .

Law of contradiction $\{\varphi, \sim \varphi\} \mid_{Int} \bot$.

 $\label{eq:intuition} \textit{Intuitionistic reductio} \qquad \qquad \text{If } \Gamma \cup \{\phi\} \ \ {\mbox{\models}}_{Int} \perp, \Gamma \ \ {\mbox{\models}}_{Int} \sim \phi.$

To get classical logic, take \(\bigcup_{Class} \) to be the smallest relation that meets the eleven condiitons above, together with:

Double negation elimination $\{\sim \sim \phi\} \mid_{Class} \phi$.