An atomic formula is bounded

If φ and ψ are bounded, so are $(\varphi \land \psi)$, $(\varphi \lor \psi)$, and $\sim \varphi$. If φ is bounded, so are $(\forall x \le \tau)\varphi$ and $(\exists x \le \tau)\varphi$, where "x" doesn't occur within τ .

A Σ formula is obtained by prefixing existential quantifiers to a bounded formula. A set or relation is Σ iff it's the extension of a Σ formula. A set of relation is Δ iff it and its complement are Σ .

Church-Turing Thesis. A partial function is calculable iff it's the extension of a Σ formula.

A set or relation is effectively enumberable iff it's Σ .

A set or relation is decidable iff it's Δ .

Every true Σ sentence is provable in PA.

Every effectively enumerable set is *weakly representable* in PA: There is a formula φ such that, for every n, n is in the set iff PA $\mid \varphi[n]$.

Every decidable set S is *strongly representable* in PA: There is a formula ψ such that, for any in, if $n \in S$, $\psi([n]) \in PA$, and if $n \notin S$, PA $\mid \sim \psi([n])$.

Every calculable total function f is *functionally representable* in PA: There is a formula \mathcal{F} so that, for any n, PA $\mid (\forall y)(\mathcal{F}([n], y) \leftrightarrow y = [f(n)])$.