Self-reference Lemma. For any formula $\phi(x)$, there is a sentence ψ so that PA $\vdash (\psi \leftrightarrow \phi([\ulcorner \psi \urcorner])$.

Proof: Let d be the following calculable function:

If m has the form
$$\theta(x)$$
, $d(m) = \lceil \theta([m])$. Otherwise $d(m) = 0$.

d is calculable, so there is a formula $\mathfrak D$ that functionally represents it. Let $\chi(x)$ be the formula $(\exists y)(\mathfrak D(x,y) \wedge \psi(y))$, let $m = \lceil \chi(x) \rceil$, and let $\phi = \chi([m])$, so that $\lceil \phi \rceil = d(m)$. In PA, we can prove the following:

$$(\forall y)(\mathfrak{D}([m],y) \leftrightarrow y = [\lceil \phi \rceil]).$$

$$((\exists y)(\mathfrak{D}([m],y) \land \psi(y)) \leftrightarrow \psi([\lceil \phi \rceil])).$$

$$(\phi \leftrightarrow \psi([\lceil \phi \rceil])).$$

Write $y B_{\Gamma} x$ for "y is the code of a sequence of sentences containing x, each of which is either a member of Γ , an axiom of logic, or obtained from earlier members of the sequence by modus ponens."

$$\operatorname{Bew}_{\Gamma}(x) =_{\operatorname{Def}} (\exists y) \ y \ B_{\Gamma} x$$
, i.e., x is provable in Γ

Use the self-reference lemma to find γ so that PA $\mid (\gamma \leftrightarrow \sim \text{Bew}_{\Gamma}([\gamma]))$. γ asserts its own unprovability.

If Γ is consistent, γ is unprovable.

If Γ is ω -consistent, γ is unrefutable.

The proof of "CON(Γ) \rightarrow ~ Bew $_{\Gamma}([\gamma])$ " can be formalized in PA giving us the

Second Incompleteness Theorem. If Γ is consistent, $\Gamma \nmid CON(\Gamma)$