Self-reference Lemma. For any formula $\varphi(x)$, there is a sentence ψ so that PA $\mid (\psi \leftrightarrow \varphi([\psi^{\uparrow}]))$.

Proof: Let d be the following calculable function:

If m has the form $\theta(x)$, $d(m) = \lceil \theta([m])$. Otherwise d(m) = 0.

d is calculable, so there is a formula D that functionally represents it. That is, for each n,

$$\mathbf{PA} \models (\forall \mathbf{y})(\mathfrak{D}(\mathbf{n}],\mathbf{y}) \leftrightarrow \mathbf{y} = [\mathbf{d}(\mathbf{n})]).$$

Let $\chi(x)$ be the formula $(\exists y)(\mathfrak{D}(x,y) \land \psi(y))$. Let $m = \lceil \chi(x) \rceil /$ Let $\varphi = \chi([m])$, so that $\lceil \varphi \rceil = d(m)$. In PA, we can prove: $(\forall y)(\mathfrak{D}([m],y) \leftrightarrow y = [\lceil \varphi \rceil])$. $((\exists y)(\mathfrak{D}([m],y) \land \psi(y)) \leftrightarrow \psi([\lceil \varphi \rceil]))$. $(\varphi \leftrightarrow \psi([\lceil \varphi \rceil]))$.

First Incompleteness Theorem.

Write y B_{Γ} x for "y is the code of a sequence of sentences containing x, each of which is either a member of Γ , an axiom of logic, or obtained from earlier members of the sequence by modus ponens."

 B_{Γ} is decidable in PA.

 $\operatorname{Bew}_{\Gamma}(x) =_{\operatorname{Def}} (\exists y) \ y \ B_{\Gamma} x$, i.e., x is provable in Γ

Use the self-reference lemma to find γ so that PA $\mid (\gamma \leftrightarrow \sim \text{Bew}_{\Gamma}([\gamma]))$. γ asserts its own unprovability.

If Γ is consistent, γ is unprovable.

If Γ is ω -consistent, γ is unrefutable.

This shows that, if Γ is ω -consistent, it's incomplete. Rosser strengthened this to: If Γ is consistent, it's incomplete.