Second Incompleteness Theorem. We showed: If Γ is consistent, $\Gamma \nmid \gamma$. Expressed in terms of the codes: $CON(\Gamma) \rightarrow \sim Bew_{\Gamma}([\lceil \gamma \rceil])$. Formalizing this proof within Γ : $$\Gamma \vdash (CON(\Gamma) \rightarrow \sim Bew_{\Gamma}([\lceil \gamma \rceil])$$ $$\Gamma \vdash (CON(\Gamma) \rightarrow \gamma)$$ If Γ proves CON(Γ), Γ proves γ . But we know that, if Γ proves γ , Γ is inconsistent. Therefore, if Γ is consistent, it doesn't prove CON(Γ). **Löb's Theorem.** For Γ a recursively axiomatized extension of PA, $(Bew([\lceil \phi \rceil]) \rightarrow \phi)$ is provable in Γ if and only if ϕ is provable in Γ . **Proof:** (←) is obvious This proof of (\Rightarrow) is due to Kripke. Suppose φ isn't provable in Γ . So $\Gamma \cup \{ \sim \phi \}$ is consistent. By the second incompleteness theorem, $CON(\Gamma \cup \{\sim \phi\})$ isn't provable in $\Gamma \cup \{\sim \phi\}$. Reformulate this arithmetically: This arithmetically. $$\Gamma \cup \{\sim \phi\} \quad \land \sim \operatorname{Bew}_{\Gamma \cup \{\sim \phi\}}([\lceil \sim 0 = 0 \rceil]).$$ $$\Gamma \cup \{\sim \phi\} \quad \land \sim \operatorname{Bew}_{\Gamma}([\lceil (\sim \phi \rightarrow \sim 0 = 0) \rceil]).$$ $$\Gamma \quad \lor \{\sim \phi\} \quad \land \sim \operatorname{Bew}_{\Gamma}([\lceil \phi \rceil]).$$ $$\Gamma \quad \land (\sim \phi \rightarrow \sim \operatorname{Bew}_{\Gamma}([\lceil \phi \rceil])).$$ $$\Gamma \quad \land (\operatorname{Bew}_{\Gamma}([\lceil \phi \rceil]) \rightarrow \phi).$$ We can formalize this argument: $$\Gamma \hspace{0.2em}\rule{0.7em}{0.8em}\hspace{0.2em}\hspace{0.2em}\rule{0.7em}{0.8em}\hspace{0.2em}\rule{0.7em}{0.8em}\hspace{0.2em}\hspace{0.2em}\rule{0.7em}{0.8em}\hspace{0.2em}\hspace{0.2em}\hspace{0.2em}\hspace{0.2em}\rule{0.7em}{0.8em}\hspace{0.2$$