Second Incompleteness Theorem.

We showed: If Γ is consistent, $\Gamma \nmid \gamma$.

Expressed in terms of the codes: $CON(\Gamma) \rightarrow \sim Bew_{\Gamma}([\lceil \gamma \rceil])$.

Formalizing this proof within Γ :

$$\Gamma \vdash (CON(\Gamma) \rightarrow \sim Bew_{\Gamma}([\lceil \gamma \rceil])$$

$$\Gamma \vdash (CON(\Gamma) \rightarrow \gamma)$$

If Γ proves CON(Γ), Γ proves γ .

But we know that, if Γ proves γ , Γ is inconsistent.

Therefore, if Γ is consistent, it doesn't prove CON(Γ).

Löb's Theorem. For Γ a recursively axiomatized extension of PA, $(Bew([\lceil \phi \rceil]) \rightarrow \phi)$ is provable in Γ if and only if ϕ is provable in Γ .

Proof: (←) is obvious

This proof of (\Rightarrow) is due to Kripke.

Suppose φ isn't provable in Γ .

So $\Gamma \cup \{ \sim \phi \}$ is consistent.

By the second incompleteness theorem, $CON(\Gamma \cup \{\sim \phi\})$ isn't provable in $\Gamma \cup \{\sim \phi\}$.

Reformulate this arithmetically:

This arithmetically.
$$\Gamma \cup \{\sim \phi\} \quad \land \sim \operatorname{Bew}_{\Gamma \cup \{\sim \phi\}}([\lceil \sim 0 = 0 \rceil]).$$

$$\Gamma \cup \{\sim \phi\} \quad \land \sim \operatorname{Bew}_{\Gamma}([\lceil (\sim \phi \rightarrow \sim 0 = 0) \rceil]).$$

$$\Gamma \quad \lor \{\sim \phi\} \quad \land \sim \operatorname{Bew}_{\Gamma}([\lceil \phi \rceil]).$$

$$\Gamma \quad \land (\sim \phi \rightarrow \sim \operatorname{Bew}_{\Gamma}([\lceil \phi \rceil])).$$

$$\Gamma \quad \land (\operatorname{Bew}_{\Gamma}([\lceil \phi \rceil]) \rightarrow \phi).$$

We can formalize this argument:

$$\Gamma \hspace{0.2em}\rule{0.7em}{0.8em}\hspace{0.2em}\hspace{0.2em}\rule{0.7em}{0.8em}\hspace{0.2em}\rule{0.7em}{0.8em}\hspace{0.2em}\hspace{0.2em}\rule{0.7em}{0.8em}\hspace{0.2em}\hspace{0.2em}\hspace{0.2em}\hspace{0.2em}\rule{0.7em}{0.8em}\hspace{0.2$$