Löb conditions:

Translating Gödel and Löb's Results into Modal Terms

Fix Γ a recursively axiomatized extension of PA, writing "Bew" instead of "Bew_{L"}"

A Γ -interpretation is a function *i* that associates an arithmetical sentence with each modal formula, subject to the following constraints:

$$\begin{split} &i (\phi \lor \psi) = (i(\phi) \lor i(\psi)) \\ &i (\phi \land \psi) = (i(\phi) \land i(\psi)) \\ &i (\phi \neg \psi) = (i(\phi) \neg i(\psi)) \\ &i (\phi \neg \psi) = (i(\phi) \neg i(\psi)) \\ &i (\frown \phi) = \sim i(\phi) \\ &i (\Box \phi) = Bew_{\Gamma}([\ulcorneri(\phi)\urcorner]) \end{split}$$

A modal formula φ is *always provable* in Γ iff, for each Γ -interpretation i, $i(\varphi)$ is provable in Γ . φ is *always true* for Γ iff, for each Γ -interpretation i, $i(\varphi)$ is true in the standard model \mathbb{N} .

GL (= K4L) is the smallest set of modal formulas containing these axioms and closed under these rules:

Axioms. (K) $\Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$
(4) $\Box \phi \rightarrow \Box \Box \phi$.
(L) $\Box(\Box \phi \rightarrow \phi) \rightarrow \Box \phi)$ Rules:Necessitation.
Tautological Consequence.

Solovay's Theorem. Assuming Γ doesn't prove any Σ sentence that are false in the standard model, a model formula is in GL if and only if it's always provable.