Stalnaker Semantics

Robert Stalnaker¹ revolutionized the study of conditionals by applying to it the methods of possible-worlds semantics. He regarded a conditional as true in a world w iff its consequent is true in the world most similar to w in which the antecedent is true.

Define a *candidate Stalnaker model* to be a quadruple $\langle W,I,f,@\rangle$, where W is a nonempty set of things we're calling worlds, I is a function {atomic formulas} $\times W \rightarrow \{T,F\}$, f is a partial function²: W \times {formulas} \rightarrow W, and @, the actual world of the model, is an element of W. We define what it is for a formula to be true in a world in the model:

An atomic formula α is true in w iff $I(\alpha, w) = T$ A conjunction is true in w iff both conjuncts are true in w. A disjunction is true in w iff one or both disjuncts are true in w. A negation is true in w iff the negatum isn't true in w. "____" isn't true in w. A conditional ($\varphi > \psi$) is true in w iff either $\langle w, \varphi \rangle$ isn't in Dom(f) or $\langle w, \varphi \rangle$ is in Dom(f) and ψ is true in f(w, φ).

A formula is true in the model iff it's true in @.

A Stalnaker model is a candidate Stalnaker model that meets these further conditions:

 φ is true in $f(w,\varphi)$. If φ is true in w, $f(w,\varphi) = w$. If ψ is true in $f(w,\varphi)$, $\langle w,\psi \rangle$ is in Dom(f). If ψ is true in $f(w,\varphi)$ and φ is true in $f(w,\psi)$, $f(w,\varphi) = f(w,\psi)$.

A formula is a *Stalnaker theorem* iff it's derived from the following axioms by the following rules:

Axioms:

(Conditional K) $((\phi > (\psi \rightarrow \theta)) \rightarrow ((\phi > \psi) \rightarrow (\phi > \theta)))$ (Reflexive law) $(\phi > \phi)$ (Modus ponens) $(((\phi > \psi) \land \phi) \rightarrow \psi)$ (Centering) $((\phi \land \psi) \rightarrow (\phi > \psi))$ (Equivalent antecedents) $(((\phi > \psi) \land (\psi > \phi)) \supset ((\phi > \theta) \leftrightarrow (\psi > \theta)))$ (Conditional excluded middle) $((\phi \Rightarrow \psi) \lor (\phi \Rightarrow \sim \psi))$

¹A Theory of Conditionals (Blackwell, 1968).

²That is, s is a function whose domain is a subset of $W \times \{$ sentences $\}$ and whose range is a subset of W.

Rules:

(Tautological consequence) You may write any tautology or tautological consequence of things you've written earlier.

(Conditionalization). If you've written ψ , you may write ($\phi \Rightarrow \psi$).

A f_{orm} ula is a *Stalnaker consequence* of a set of sentences Γ iff it's a tautological consequences of {Stalnaker theorems} $\cup \Gamma$. Γ is *Stalnaker-consistent* iff $\Gamma \cup$ {Stalnaker theorems} is tautologically consistent. By examining the axioms and rules we verify:

Soundness Theorem. Every Stalnaker theorem is true in every Stalnaker model.

Completeness Theorem. Every formula that is true in every Stalnaker model is a Stalnaker theorem.

Sketch of proof: Suppose that χ isn't a Stalnaker theorem. Thene we can form a maximal Stalnaker-consistent set @ of formulas that doesn't have χ as a Stalnaker consequence. L@ is a complete story. Form a candidate Stalnaker mode $\langle W, I, f, @ \rangle$ by lettingW be the set of maximal Stalnaker-consistent sets of formulas. Let $I(\alpha, w) = T$ iff $\alpha \in w$. $\langle w, \phi \rangle$ is in Dom(f) iff $(\phi > _|_)$ isn't in w. If $\langle w, \phi \rangle$ is in Dom(f), $f(w, \phi) = \{\psi: (\phi > \psi) \in w\}$. One can verify, although it takes a while, that, for any formula ϕ , ϕ is true in a world if and only if it's an element of the world and that $\langle W, I, f, @ \rangle$ is a Stalnaker model. \boxtimes

It follows that a set of formulas is Stalnaker consistent iff there is a Stalnaker model in which its members are all true. φ is a Stalnaker consequence of Γ iff φ is true in every Stalnaker model in which all the members of Γ are true. We have compactness.

There is a modal logic in the background. If φ is possible in w, then there is a world accessible from w in which φ is true, and so, on Stalnaker's assumptions, there is a closest world to w among the worlds accessible from w in which φ is true. So $f(w,\varphi)$ is defined. Following up on this idea, we can introduce modal operators as defined symbols of the modal language thus:

$$\Diamond \phi =_{\mathrm{Def}} \sim (\phi > _|_).$$
$$\Box \phi =_{\mathrm{Def}} (\sim \phi > _|_0.$$

This gives us KT as the modal logic. The other familiar modal principles can be adopted as additional axiom.