
Stalnaker Semantics

Robert Stalnaker1 revolutionized the study of conditionals by applying to it the methods
of possible-worlds semantics. He regarded a conditional as true in a world w iff its consequent is
true in the world most similar to w in which the antecedent is true.

Define a candidate Stalnaker model to be a quadruple <W,I,f,@>, where W is a
nonempty set of things we’re calling worlds, I is a function {atomic formulas} × W 6 {T,F}, f is
a partial function2: W × {formulas} 6 W, and @, the actual world of the model, is an element of
W. We define what it is for a formula to be true in a world in the model:

An atomic formula α is true in w iff I(α,w) = T
A conjunction is true in w iff both conjuncts are true in w.
A disjunction is true in w iff one or both disjuncts are true in w.
A negation is true in w iff the negatum isn’t true in w.
“_|_” isn’t true in w.
A conditional (n > ψ) is true in w iff either <w,n> isn’t in Dom(f) or <w,n> is in 
Dom(f) and ψ is true in f(w,n).

A formula is true in the model iff it’s true in @.

A Stalnaker model is a candidate Stalnaker model that meets these further conditions:

n is true in f(w,n).
If n is true in w, f(w,n) = w.
If ψ is true in f(w,n), <w,ψ> is in Dom(f).
If ψ is true in f(w,n) and n is true in f(w,ψ), f(w,n) = f(w,ψ).

A formula is a Stalnaker theorem iff it’s derived from the following axioms by the
following rules:

Axioms:
(Conditional K) ((n > (ψ 6θ)) 6 ((n > ψ) 6 (n > θ)))
(Reflexive law) (n > n)
(Modus ponens) (((n > ψ) v n) 6 ψ)
(Centering) ((n v ψ) 6 (n > ψ))
(Equivalent antecedents) (((n > ψ) v (ψ > n)) e ((n > θ) : (ψ > θ)))
(Conditional excluded middle) ((n Y ψ) w (n Y ~ ψ))

1A Theory of Conditionals (Blackwell, 1968).

2That is, s is a function whose domain is a subset of W × {sentences} and whose range is
a subset of W.



Rules:
(Tautological consequence) You may write any tautology or tautological consequence of things 
you’ve written earlier.
(Conditionalization). If you’ve written ψ, you may write (n Y ψ).

A formula is a Stalnaker consequence of a set of sentences Γ iff it’s a tautological
consequences of {Stalnaker theorems} c Γ.  Γ is Stalnaker-consistent iff Γ c {Stalnaker
theorems} is tautologically consistent. By examining the axioms and rules we verify:

Soundness Theorem. Every Stalnaker theorem is true in every Stalnaker model.

Completeness Theorem. Every formula that is true in every Stalnaker model is 
a Stalnaker theorem.

Sketch of proof: Suppose that χ isn’t a Stalnaker theorem. Thene we can form a maximal
Stalnaker-consistent set @ of formulas that doesn’t have χ as a Stalnaker consequence. L@ is a
complete story. Form a candidate Stalnaker mode <W,I,f,@> by lettingW be the set of maximal
Stalnaker-consistent sets of formulas. Let I(α,w) = T iff α 0 w. <w,n> is in Dom(f) iff (n > _|_)
isn’t in w. If <w,n> is in Dom(f), f(w,n) = {ψ: (n > ψ) 0 w}. One can verify, although it takes a
while, that, for any formula n, n is true in a world if and only if it’s an element of the world and
that <W,I,f,@> is a Stalnaker model.:

It follows that a set of formulas is Stalnaker consistent iff there is a Stalnaker model in
which its members are all true. n is a Stalnaker consequence of Γ iff n is true in every Stalnaker
model in which all the members of Γ are true. We have compactness.

There is a modal logic in the background. If n is possible in w, then there is a world
accessible from w in which n is true, and so, on Stalnaker’s assumptions, there is a closest world
to w among the worlds accessible from w in which n is true. So f(w,n) is defined. Following up
on this idea, we can introduce modal operators as defined symbols of the modal language thus:

 n =Def ~ (n > _|_).

~ n =Def (~ n > _|_0.

This gives us KT as the modal logic. The other familiar modal principles can be adopted as
additional axiom.



 


