
10. Syntactical Treatments of Modality, with 
Corollaries on Reflexion Principles and 
Finite Axiomatizability 

On several occasions it has been proposed that modal terms 
('necessary', 'possible', and the like) be treated as predicates of 
expressions rather than as sentential operators. 1 According to 
this proposal, we should abandon such sentences as 'Necessarily 
man is rational' in favor of "Man is rational' is necessary' (or 
"Man is rational' is a necessary truth'). The proposal thus amounts 
to the following: to generate a meaningful context a modal term 
should be prefixed not to a sentence or formula but to a name of a 
sentence or formula (or perhaps a variable whose values are 
understood as including sentences). 

The advantage of such a treatment is obvious: if modal terms 
becomes predicates, they will no longer give rise to non-extensional 
contexts, and the customary laws of predicate calculus with 
identity may be employed. The main purpose of the present 
paper is to consider to what extent within such a treatment the 
customary laws of modal logic can be maintained. 

These considerations form the content of Section 2. Sections 3 
and 4 use identical methods, but contain results unrelated to 
modal logic; Section 3 concerns the non-provability of certain 

Originally published in Acta Phi/osophica Fennica 16: 153- 67 (1963). Reprinted 
with permission. This paper was written while the author held a United States 
National Science Foundation Grant, NSF G - 19830. I wish to express gratitude 
also to my student, Mr. David Kaplan, and to Professor R. L. Vaught for helpful 
discussion and correspondence. 

1 Examples of such proposals may be found in [6], in which necessary truth 
is identified with provability in a certain system, as well as Carnap [l, pp. 233- 60] 
and Quine [14]. · 
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arithmetical 'reflexion principles', and Section 4 contains general 
theorems on non-finite axiomatizability . 2 

1. PRELIMINARIES 

The terminology of Tarski, Mostowski, and Robinson [17] will 
be adopted. A few additional notions will be employed, for 
instance, that of a logical axiom (for the first-order predicate 
calculus with identity). The logical axioms can be chosen in 
various ways; we impose only the following requirements : 
(1) the set of logical axioms is to be recursive; (2) all logical axioms 
are to be sentences (that is , formulas without free variables); (3) 
the logical axioms are to be complete under the rule of detachment 
(or modus ponens), in the sense that, for any theory T , the set of 
logically valid sentences of T is to be the smallest set closed under 
detachment and containing all logical axioms which are sentences 
of T. 

Let <p be a formula whose only free variable is u. Then if;<cpl, or 
the relativization of if; to <p, can be defined for an arbitrary for­
mula if; by the following recursion: if if; is atomic, if;'cpl is if;; 
(~if; )'cpl is ~ if;'cpl, ( 1/1 --+ x)'cpl is i/J'cpl --+ x<cpl, and analogously for the 
other sentential connectives ; (Aa i/J)'cpl is Aa (cp(a) --+ i/J''Pl), and 
(Va i/J)''Pl is Va (<p(a) 11 i/J<'P>) . 3 If T is a theory , then T'cpl, or the rel­

ativization of T to <p, is that theory whose constants are those of T 
together with those occurring in <p, and whose valid sentences are 
the logical consequences within this vocabulary of the set of 
sentences i/J'cpl, where 1/1 is a valid sentence of T. 

We shall be particularly interested in the theories P and Q of 
Tarski, Mostowski, and Robinson [17] (Peano's arithmetic and 

2 The results of this paper may be considered as applications of the Paradox 
of the Hangman, or rather the related Paradox of the Knower , in the sense that 
the proof of the basic lemma of the paper, Lemma 3, was partly suggested by the 
latter paradox. Both paradoxes were first exactly formulated in Kaplan and 
Montague [7], which contained the conjecture that they might , like the Liar , lend 
themselves to some sort of technical application. 

3 Thus the notation 'x(y)' (as well as the notation ' x(y,z)' in later passages) is 
used , as in Tarski [I 7], for proper substitution in a formula for the variable u 
(or the variables u, v). The same notation will also be used for the value of a 
function, but the context will always suffice to determine the intended sense. 
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Robinson's arithmetic respectively).4 Both theories have as non­
logical constants the symbols, 0, S, + , · ; their possible realizations 
will consequently have the form ( A, z, s, p, t ) , where z EA, sis a 
function mapping A into A, and p, tare functions mapping the 
set of ordered pairs of elements of A into A. By the standard 
realization (of P or Q) is understood that realization ( A, z, s, P, t ) 
in which A is the set of natural numbers, z is the number zero, sis 
the successor function, and p, t are the respective operations of 
addition and multiplication of natural numbers. When we speak 
simply of truth or definability we mean truth or definability in the 
standard realization 210 • In other words, a sentence is said to be 
true if it is a sentence of Q and true in 210 , and a formula <p is said 
to define a set X of natural numbers if <p is a formula of Q whose 
only free variable is u, and <p is satisfied in 21 0 by those and only 
those natural numbers which are members of X. Derivatively , 
we call a set of sentences true if all its members are true, and a 
theory true if its set of valid sentences is true ; and we say that <p 
defines a set X of expressions if <p defines the set of Godel numbers 
of members of X. 5 

If Xis a set of natural numbers, Ta theory, and <pa formula of T 
whose only free variable is u, then we say that <p super-numerates X 
in T if 1-r <p(An) whenever n EX, and that <p numerates X in T if, 
for every natural number n, n EX if and only if 1-r <p(An). On the 
other hand , if X is a set of expressions, we say that <p numerates 
or super-numerates X in T if <p respectively numerates or super­
numerates in T the set of Godel numbers of members of X, 

A function f mapping the set of natural numbers into itself is 
said to be functionally numerable in a theory T if there is a formula 
<p of T with free variables u, v such that, for all natural numbers n, 

1-r<p(An, v)+-+v = AJ<n>· 
4 The only properties of Q used in this paper .are that (i) the constants of Q 

are 0, S, + , ·, (ii) Q is true (in the sense about to be explained), (iii) Q is finitely 
axiomatizable, and (iv) all one-place recursive functions of natural numbers are 
functionally numerable in Q (again in a sense which is about to be explained). 
Thus Q could be replaced everywhere by any other theory with these properties. 

5 To make these definitions (as well as those in the next paragraph) perfectly 
unambiguous we should have to make certain disjointness assumptions , for 
instance, that no natural number is an expression . Without such assumptions, 
however, the intended sense of truth and definability will in what follows be 
clearly determined by the context. 
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We can associate with each expression a term of Q which can be 
regarded as the standard name of that expression; to be sp ·fi . . h . ec1 c, 
we associate ":It an express10n u the name_ An,<"> (that is, the 
result ofprefixmg nr(u) occurrences ofS to the mdividual constant 
0 , where nr(u) is the Godel number of u). Keeping this interpreta­
tion in mind, we can regard the following lemma as a principle of 
self-reference; it is implicit in many earlier publications, and 
proved in essentially the present form in Montague [12]. 

Lemma J. If T is a theory in which all one-place recursive 
functions of natural numbers are functionally numerable, tjJ is a 
formula of T whose only free variable is u, and E is a one-place 
recursive function of expressions, then there is a sentence <p of T 
such that 

I- T <fJ +-+ tjl(An,(E(cp))). 

Lemma 2. If T is a theory which is an extension of Q<P>, for 
some formula /3 whose only free variable is u, then all one-place 
recursive functions of natural numbers are functionally numer­
able in T 

Proof This is easily derived from the fact , proved in (17], that 
all recursive functions are functionally numerable in Q. 

The next statement is the central lemma of the present paper, 
and form.s the basis of most of the results of the following sections. 

Lemma 3. Suppose that T is a theory and a a formula whose 
only free variable is u, and, for all sentences <p , tjJ of T , 

(i) 1-r a(An,(cp)) -+ <fJ , 
(ii) 1-r a(An,(cp)), if <{J is a(An,(1/1)) -+ t/1, 
(iii) 1-r a(An,(cp)), if <p is a logical axiom, 
(iv) if 1- r a(An,(cp-1/1)) and 1-r a(An,(cp)), then 1-r a(An,(1/1)), 
(v) Q<fJ> is a subtheory of T, for some formula /3 whose only free 

variable is u. 

Then T is inconsistent. 

Proof Since Q is finitely axiomatizable, so is Q<P>. Let X be a 
valid sentence of Q'P> from which all valid sentences of Q'P> are 
logically derivable, and let T' be that theory whose valid sentences 
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are the sentences of T derivable from X· By Lemmas 1 and 2, there 
is a sentence <p of T such that 

(1) rT, cp ._. cx(An,(x- ~q,)). 

If we let L be the theory whose valid sentences are the logically 
valid sentences of T, it follows by the Deduction Theorem that 

rL X---+ (<p - cx(An,(x- ~q,))). 

Hence, by sentential logic, 

(2) rL(cx(An,(x-~q,))---+ (x---+ ~<p))---+ (x---+ ~<p). 

Let y be the sentence cx(An,cx-~q,>)---+ (x---+ ~cp). It follows from 
(iii) and (iv) that if if, is any logically valid sentence of T, then 
f-r cx(An,(i/t)). In particular, we have by (2) that 

(3) f-r cx(An,(y-<x- ~q,))). 

Therefore, by (iv) and (ii), 

(4) rT cx(An,(x- ~q,)), 

and hence, by (1), 

rr <p. 

By (4) and (i), 

rrx---+ ~<p, 

and hence, by (v), 

rT ~ <p, 

and T is inconsistent. 

Tarski's theorem on the undefinability of truth (proved in 
[16], using the Paradox of the Liar) can be formulated as follows: 
if T is a theory, ex is a formula whose only free variable is u, condi­
tion (v) of Lemma 3 is satisfied, and in addition 

(i') rr cx(An,Cq,)) ._. <p, for all sentences <p of T, 

then T is inconsistent. 
This theorem is an immediate consequence of Lemma 3. There 

seems, however, to be no direct implication in the opposite 
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direction; indeed, Tarski's assumption (i') appears intuitively 
much stronger than the combination of (i)- (iv). 

The following lemma, closely related to Lemma 3, will also be 
used. 

Lemma 4. Suppose that Tis a theory and ex a formula whose 
only free variable is u, and that, for all sentences <p, if, of T, con­
ditions (i), (iii), (v) of Lemma 3 hold, together with the following: 

(iv') if rT cx(An,(q,-,i,)), then f-r cx(An,(q,)) ---+ cx(An,(i/t)). 

Then rr ~ cx(An,Cy)), for some sentence y of T of the form 
ex( An,<6>) ---+ o. 

Proof We form X, <p, y as in the proof of Lemma 3, and carry 
through that proof up to and including step (3). From (3) and 
(iv') we conclude that 

f-T cx(~nr(y)) ---+ cx(An,(x- ~q,)). 

From this we conclude by (1) that 

rT cx(An,(y)) ---+ <p, 

and by (i) that 

rT cx(An,(y))---+ (x ---+ ~ <p). 

But rr x by (v) ; hence, by the two assertions above, 

rr ~ cx(An,<y>), 

and y has by its construction the required form. 

2. MODALITY 

According to the proposal mentioned at the beginning of this 
paper, modal statements will occur in a syntax language (or meta­
language). As was intimated in connection with Lemma 1, we 
suppose syntax to be arithmetized and use as syntax languages 
those languages which contain the symbols of arithmetic. 6 Thus 

6 This approach is by no means essential, and is adopted only to allow us to 
build on terminology and results already present in the literature . An equivalent 
and perhaps more natural approach would employ a syntax language (such as 
the one introduced in Tarski [ 16]) which speaks directly about expressions. 
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we assume throughout the present section that N is a formula 
whose only free variable is u ; and, for any sentence cp, we set 
N[cp] equal to the sentence 

N(!l.n,(cp)), 

that is, the proper substitution of what might be regarded as the 
name of cp for all free occurrences of u in N. We think of N [ cp] 
as expressing the assertion that cp is necessarily true, but we 
impose no special conditions on N. For example, N may be a 
complex formula of set theory , or simply an atomic formula nu, 
where n is a one-place predicate . In particular, we do not assume 
that N is in any sense equivalent to a formula of P. 

The following remark concerning the limitations of syntactical 
interpretations of modal logic is due to Godel [6] : if N is the 
standard formula of P defining the set of valid sentences of P , then 
N [N[cp] -+ cp] is untrue for some sentences cp of P. 

Godel's proof of this remark employs his earlier theorem (in 
[5]) to the effect that the consistency of P is not provable in P, 
and like the proof of that earlier theorem depends essentially on 
the exact structure of the formula N . Now it is easy to find 
formulas of P (other than the standard formula) which define the 
set of valid sentences of P and with respect to which the consis­
tency of Pis provable in P . 7 We might hope to use one of these 
more complex formulas to express necessity and still maintain the 
characteristic modal law 

N[N[cp]-+ cp] . 

But this hope is vain, as our investigations (in particular, Theorem 
4, which is a generalization of Godel's remark) will show . 
Stronger negative results are also obtainable, like the following. 

Theorem 1. Suppose that Tis any theory such that 

(i) Tis an extension of Q (or of Q<«> , for some formula a. whose 
only free variable is u), 

7 
Examples may be found in Feferman [3] , but simpler examples may be 

constructed in a rather obvious way. (Feferman's formulas were devised so as to 
satisfy certain additional conditions as well.) 
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and , for all sentences cp, 1/1 of T, 

(ii) 1-TN(cp]-+cp, 
(iii) 1-T N[N[cp]-+ cp], 
(iv) 1-T N[cp-+ 1/1]-+ (N[cp]-+ N[l/f]) , 
(v) 1-T N[cp], if cp is a logical axiom. 

Then Tis inconsistent. 

Proof. By Lemma 3, taking N for a. . 

293 

Notice that the assumptions of Theorem 1 concern only those 
expressions N[cp] in which cp is without free variables . Thus the 
difficulties exhibited both here and below are seen to be independ­
ent of the familiar problems resulting from quantification into 
modal contexts. 

It has been shown in joint work of Mr. David Kaplan and the 
author that none of the hypotheses (ii)- (v) can .be dropped. 
Theorem 1 can , however, be slightly strengthened in view of 
Lemma 4: 

Theorem 2. Suppose that T satisfies conditions (i) , (ii) , (iv) , (v) 
above . Then there is a single sentence cp of T such that 

1-T ~ N[N[cp]-+ cp]. 

The following assertion , which overlaps Theorem 1, can be 
obtained directly from Lemma 3. 

Theorem 3. Suppose that T satisfies conditions (i) and (ii) of 
Theorem 1, and that 

( vi) 1-T N [ cp] whenever cp is a sentence such that 1-T cp . 

Then Tis inconsistent. 
The following generalization of Godel's remark is a simple 

consequence of Theorem 1. 

Theorem 4. Suppose that U is any true theory with the same 
constants as P, and that N is a formula of P defining the set of 
valid sentences of U. Then N[N[cp]-+ cp] is untrue for some 
sentences cp of P. 
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Proof. Assume the hypothesis, and that N[N[<p]-+ <p] is true 
for all sentences <p of P. Let T be the theory whose valid sentences 
are the true sentences of P. Then T and N will satisfy conditions 
(i)- (v) of Theorem 1. Hence Tis inconsistent , which is absurd . 

Now what general conclusions can be drawn from Theorems 
1- 4? In the first place, observe that the schemata in conditions 
(ii)- (v) of Theorem 1 are provable in the well-known systems of 
first-order modal logic with identity, that is , the systems of 
Carnap [2] and Kripke [8] . These schemata would, moreover , be 
provable in any reasonable extension to predicate logic of Sl, 
the weakest of the Lewis modal calculi. 8 Further, it is not un­
natural to impose condition (i): modal logic, like ordinary logic, 
ought to be applicable to an arbitrary subject matter , including 
arithmetic. Condition (vi), though not needed in Theorem 1, is 
rather natural , and appears as an inference rule in many familiar 
systems. 

Thus if necessity is to be treated syntactically , that is, as a 
predicate of sentences, as Carnap and Quine have urged , then 
virtually all of modal logic , even the weak system Sl , must be 
sacrificed . 

This is not to say that the Lewis systems have no natural inter­
pretation. Indeed , if necessity is regarded as a sentential operator, 
then perfectly natural model-theoretic interpretations may be 
found, for instance in Kripke [8] and Montague [10], which satisfy 
all the Lewis systems Sl- S5. It should be observed, however, that 
the natural model-theoretic interpretations (as opposed to ad hoc 
interpretations) provide no justification for any of Sl - S4 ; for, 
though they satisfy the theorems of these systems, they satisfy 
additional modal principles as well, and indeed give all of S5 , 
the strongest of the Lewis systems and the system whose quantified 
version was in a sense proved complete in Kripke [8). 

Thus it seems at present doubtful that any philosophical interest 
can be attached to Sl - S4. The natural model-theoretic treatment 
gives a system stronger than all of them , and no satisfactory 
syntactical treatment can be provided for any of them. 

8 
For the Lewis calculi see Lewis and Langford [9 , pp. 492 ff.] 
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3. ARITHMETICAL REFLEXION PRINCIPLES 

Feferman has in [4] constructed 'recursive progressions of 
theories ' in which the passage from a theory T to its successor 
consists in ad?ing to T all instances of the schema 

a(Lln,<<i>>) -+ <p , 

where a is a rather special formula defining the set of valid sentences 
of T. In view of Godel 's theorem on non-demonstrable consistency 
(or rather the version of it given in Feferman [3]) , it is clear that 
in• the cases considered by Feferman the successor of a theory is 
always stronger than the theory itself. The theorems of the present 
section show this to be the case even in more general situations , 
when no limitation is placed on the structure of the formula a. 

Lemma 5. Suppose that A , Tare theories and a, fJ formulas 
whose only free variable is u, and that 

(i) T is an extension of A, 
(ii) T is an extension of Q<P> , 
(iii) the constants of A include those of Q<P>, 
(iv) a numerates in T the set of valid sentences of A , 
(v) 1- A a(Lln,(q,)) -+ <p, for each sentence <p of A. 

Then Tis inconsistent. 

Proof. Let T' be the theory whose valid sentences are those 
sentences of A which are valid in T Then T' and a satisfy the 
hypothesis of Lemma 3. Hence T ' and therefore Tare inconsistent. 

Theorem 5. If A is a true theory with the same constants as Q, 
and a defines the set of valid sentences of A, then there is a sentence 
<p of A such that 

not I-A a(Lln,(q,))-+ <p . 

Proof. Assume the hypothesis and that, for each sentence <p 
of A , 1-A a(Lln,(q,)) -+ <p. Let T be the theory whose valid sentences 
are the true sentences of Q, and /J the formula u = u. Then 
(i)- (v) of Lemma 5 hold, and hence T is inconsistent , which is 
absurd. 
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Theorem 5 can be strengthened ; we may permit A to contain 
additional constants beyond those of Q. 

Theorem 6. Suppose that 

(i) A is a theory whose constants include those of Q, 
(ii) all sentences of Q which are valid in A are true, 
(iii) a defines the set of valid sentences of A. 

Then there is a sentence <p of A such that 

not f-A a(Anr(,p))--+ <p. 

Proof By Theorem 5, taking for A the theory whose valid sen­
tences are those sentences of Q which are valid in A , and for a the 
formula a 11 /J, where fJ is a formula of Q defining the set of sen­
tences of Q. 

A further extension is possible. Instead of requiring, as in 
Theorem 6, that the arithmetical part of A be true, we may require 
only that it be true in a certain relativized sense. 

Theorem 7. Suppose that A is a theory and a, fJ formulas 
whose only free variable is u, and that 

(i) the constants of A include those of Q1P>, 
(ii) <p is true, whenever <pis a sentence of Q and f-A <p<P>, 
(iii) a defines the set of valid sentences of A. 
Then there is a sentence <p of A such that 

not f-A a<P)(Anr(,p))--+ <p. 

Proof Assume (i)- (iii), and that, for every sentence <p of A, 
f-A a<<P>(An,(,p))--+ <p . Let T be the theory whose valid sentences 
are the sentences of A logically derivable from the valid sentences 
of A together with the sentences <p<P>, where <p is a true sentence of 
Q. 

Then Tis consistent. For suppose otherwise. Then there would 
exist true sentences <p0 , • •• , <pn such that f-A ~ (<pj/> 11 ... 11 <p~P>). 
Hence f-A [ ~ (<p0 11 .•• 11 <pn)J<P», and thus, by (ii), ~ (<p

0 11 
••• 

11 
<pn) 

is true, which is impossible. 

To show that a<P> numerates in T the set of valid sentences of A, 
assume that f-A <p . Then, by (iii), a(An,(,p)) is true, and hence 

I 
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f-r [a(An,(q,))J'P> ; that is, f-r a<P> (An,(q,)). For the converse assume 
that f- r a<P>(A"'"">) and it is not the case that f-A <p. Then' by (iii) 

( A ) • d h (P) . ' ' ~a un,(,p) I~ true, an ence f-r ~a (An,(,p)), which is impossible 
by the consistency of T. 

Thus A, T, a<P> satisfy condition (iv) of Lemma 5. Condition (v) 
has been assumed, and it is easily seen that the remaining hypoth­
eses of that lemma are also satisfied. It follows that Tis incon­
sistent, contrary to what has been shown. 

Ifwe consider super-numerations rather than defining formulas, 
then the assumption of truth involved in Theorems 5- 7 can be 
replaced by an assumption of consistency. 

Theorem 8 . Supose that A is a consistent theory and a a 
formula such that 

(i) A is an extension of Q<P>, for some formula fJ whose only free 
variable is u, 

(ii) a super-numerates in A the set of valid sentences of A . 

Then there is a sentence <p of A such that 

not f-A a(Anr(,p)) --+ <p . 

Proof Assume the contrary, and apply Lemma 5, taking A 
for both A and T. (The verification of condition (iv) of Lemma 5 
requires a small argument.) We conclude that A is inconsistent , 
contradicting the hypothesis of the theorem. 

4. NON-FINITE AXIOMATIZABILITY 

Theorem 8 yields some general theorems on non-finite axiomatiz­
ability. Observe that in these theorems we speak of formulas 
super-numerating the set of logically valid sentences of a theory, 
not as before the set of all valid sentences of the theory. 

Theorem 9. Suppose that A is a theory such that, for some for­
mula a, 

(i) A is an extension of Q<P> , for some formula fJ whose only free 
variable is u, 

(ii) variable a super-numerates in A the set of logically valid 
sentences of A, 
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(iii) I-A 1X(dn,(q,))-> <p, for each sentence <p of A. 

Then A, if consistent, is not finitely axiomatizable. 

Proof Assume the contrary, and let x be a valid sentence of A 
from which all valid sentences of A are logically derivable. By (i) 
and Lemma 2, there is a formula y of A whose only free variables 
are u, v, and such that, for each sentence <p of A, 

(1) I-A y(dn,(q,), v) +-+ v = dn,(x-q,)· 

Let b be the formula Vv(y (u, v) A 1X(v)). Then it is easily deduced 
from (ii) that b super-numerates in A the set of valid sentences of A. 
Hence, by Theorem 8, there is a sentence <p of A such that 

not I-A b(dn,(q,))-> <p. 

But, by (l), 

I-A b(dn,(q,))-> Vv(v = dn,(x-q,)I\ 1X(v)); hence 
I-A b(dn,(q,))-> 1X(dn,(x-q,)); thus, by (iii), 
I-A b(dn,(q,))-> (x-> <p); hence 
f-A b(dn,(q,)) -> <p; 

and we have arrived at contradiction. 

Theorem 9 applies only to theories which explicitly contain 
arithmetic. In many situations, however, we consider theories 
which, like certain well-known systems of set theory, contain 
arithmetic only implicitly, by way of interpretability; the next 
theorem concerns non-finite axiomatizability in such situations. 

We call a theory T' a definitional extension of a theory T if T' 
is an extension of T and there is a set D such that (i) D is a set of 
possible definitions 9 in T of non-logical constants of T' which are 
not constants of T, (ii) each non-logical constant of T' which is 
not a constant of T occurs in exactly one member of D, and (iii) 
a sentence of T' is valid in T' if and only if it is logically derivable 
from the union of D and the set of valid sentences of T. 

9 For the notion of a possible definition of a constant in a theory see Tarski, 
Mostowski, and Robinson (17]. 
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Theorem 10. 
and IX, 

Suppose that A is a theory such that, for some A' 

(i) A' is a definitional extension of A, 
(ii) A' is an extension of Q<fJ>, for some formula f3 whose only free 

variaQle is u, 
(iii) IX super-numerates in A' the set of logically valid sentences of 

A, 
(iv) I-A' 1X(dn,(q,))-> <p, for each sentence <p of A. 

Then A, if consistent, is not finitely axiomatizable. 

Proof Assume the contrary. Then there will clearly be a theory 
A' which satisfies (i)-(iv), as well as the following additional 
conditions: 

(1) A' has only finitely many constants which are not constants 
of A, 

(2) A' is finitely axiomatizable. 

Using (i) and (1), it is not difficult to show the existence of a recur­
sive function f of expressions such that, for each sentence <p of A', 

(3) f(<p) is a sentence of A, 
(4) f-A' (f> +-+ f(<p), 
(5) if <pis logically valid, then so isf(<p). 

(Loosely speaking, we constructf(<p) by first eliminating defined 
constants from <p, and then, if <p contains operation symbols, 
appending to the result an antecedent containing the existence and 
uniqueness conditions for the formulas used to define the opera­
tion symbols.) 

By (ii) and Lemma 2, there is a formula y of A' whose only free 
variables are u, v, and such that, for each sentence <p of A', 

(6) I-A' y(dn,(q,), v) +-+ v = dn,(f(q,)). 

Let b be the formula Vv (y(u, v) I\ 1X(v)). By (iii), (3), and (5), 

(7) b super-numerates in A' the set oflogically valid sentences of 
A'. 
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We show that , for each sentence <p of A ', 

(8) f-A, O(L\n,(q,) ) -> <fJ • 

Assume that <pis a sentence of A' . By (6), 

f-A ' o(L\n,(q,))-> a(L\n,(J(q, ))); hence, by (3) and (iv) , 
f-A' O(L\n,(q,)) -> f( ((J) ; 

and (8) follows by (4) . 

Now A ' is consistent , by (i) and the fact that A is consistent. 
Therefore, by (7), (8), (ii), and Theorem 9, A ' is not finitely axiom­
atizable, which contradicts (2). 

The conclusions of the last two theorems can be strengthened. 

Theorem 11. (i) If A satisfies the hypothesis ofTheorem 9, then 
A is essentially non-finitizable (that is, no consistent extension of 
A having the same constants as A is finitely axiomatizable) . (ii) If 
A satisfies the hypothesis ofTheorem IO, then A is again essentially 
non-finitizable. 

Proof It is easily seen that if A satisfies the hypothesis of one of 
the two theorems in question , then so does every consistent 
extension of A with the same constants as A . 

Now Theorem 11 (i) can be applied to the theory P, and 11 (ii) 
to what in Montague [I I] is called general set theory . Indeed, any 
theory which satisfies the condition, introduced in Definition 9 
of [I I] , of being strongly semantically closed will also satisfy the 
hypothesis of Theorem 10 (or at least will be isomorphic to a 
theory satisfying the hypothesis of Theorem IO). This follows from 
Theorem 1 of [11] ; we take for a (in Theorem 10) the standard 
formula of Q defining the set of logically valid sentences (in terms 
of derivability by detachment from the logical axioms). 

These applications are not new ; it was already shown in [ 1 I] 
that every strongly semantically closed theory is essentially non­
finitizable . Theorem 11 (ii) , however, leads to a much simpler 
proof of this conclusion than was previously available. In the first 
place , previous methods required as a lemma Godel's theorem to 
the effect that the consistency of certain theories is not provable 
within the theories themselves; this is no longer required. 
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Secondly, the earlier methods required the verification of condi­
tion (iv) of Theorem IO for one particular formula a, the 'standard• 
formula defining logical validity . But as Professor R. L. Vaught 
has observed and an inspection of the proof of Theorem I of [I 1] 
will reveal, the verification of(iv) becomes much easier ifwe take 
for a, as we may according to Theorem 11 (ii), the formula of Q 
which defines logical validity in terms of genetic provability

1
0 

rather than in terms of derivability from the logical axioms; we 
thus avoid showing that the Herbrand theorem is , so to speak, 
'provable in the object language'. 
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11. Deterministic Theories 

1. INTRODUCTION 

The purpose of this paper is to analyse the notions of a deter­
ministic theory and of a deterministic history, and to investigate 
some of the properties of these notions. To Laplace is attributed 
the assertion that if we were given the positions and momenta of 
all particles at one particular time, we could deduce , using the 
laws of mechanics, the positions and momenta of all particles at 
any later time . Implicit in this assertion is an analysis of deter­
minism as applied to theories. The analysis has been made more 
explicit by Nagel (in [20, p. 422)), who characterizes a theory as 
deterministic if it will "enable us given the state ( of a system) ... at 
one time to deduce the formulation of the state at any other 
time." (Derivatively, we might call a history deterministic if there 
is a deterministic theory which describes it.) 

Now this definition cannot be taken quite literally . For let us 
suppose that classical mechanics is deterministic in the sense of 
Laplace and Nagel. It would follow, if we were to spell out the 
definition explicitly, that for any instants t

0 
and t , there are 

sentences <p(t0 ) and <p(t) , expressing the state of the universe at 
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