Montague's Theorem

Robinson's Q:

 $\begin{array}{l} (\forall x) \sim Sx = 0.\\ (\forall x)(\forall y)(Sx = Sy \rightarrow x = y)\\ (\forall x)(x+0) = x.\\ (\forall x)(\forall y)(x + Sy) = S(x + y).\\ (\forall x)(\forall y)(x + Sy) = ((x + y) + x)\\ (\forall x)(\forall y)(x + Sy) = ((x + y) + x)\\ (\forall x)(\forall y)(x + Sy) = ((x + y) + x)\\ (\forall x)(\forall y)(x + Sy) = ((x + y) + x)\\ (\forall x)(\forall y)(x + Sy) = ((x + y) + x)\\ (\forall x)(\forall y)(x + Sy) = ((x + y) + x)\\ (\forall x)(\forall y)(x + Sy) = ((x + y) + x)\\ (\forall x)(\forall y)(x + Sy) = ((x + y) + x)\\ (\forall x)(\forall y)(x + Sy) = (x + y) + x = Sy)). \end{array}$

Q is much weaker that PA. For instance, it doesn't prove the commutative law of addition. Nevertheless, it is strong enough to prove the Self-reference Lemma.

Montague's Theorem. In the language obtained from the language of arithmetic by addin a new predicate "Nec" to represent necessity, there isn't any consistent set of sentences that:

- (i) contains the logical consequences of Q;
- (ii) contains all sentences of the form $(\operatorname{Nec}([\ \phi \rightarrow \psi \]) \rightarrow (\operatorname{Nec}([\ \phi \]) \rightarrow \operatorname{Nec}([\ \psi \]));$
- (iii) contains all sentences of the form $(Nec([\phi^{\gamma}]) \rightarrow \phi);$
- (iv) contains Nec($[\phi^{\gamma}]$) whenever it contains ϕ ; and
- (v) is closed under tautological consequence.

Proof: Suppose Γ is such a set. The Self-reference Lemma gives us a sentence v such that $(v \leftrightarrow \sim \text{Nec}([v]))$ is a consequence of Q. Consequently the following are in Γ :

1.	$(\sim \operatorname{Nec}([\ \nu \]) \rightarrow \nu)$	By (i) and (v)
2.	$(\operatorname{Nec}([\ \nu \]] \rightarrow \nu)$	By (iii)
3.	ν	From 1 and 2 by (v)
4.	Nec([v]])	From 3 by (iv)
5.	$(\operatorname{Nec}([\ \nu \]) \rightarrow \sim \nu)$	From (i)
6.	$\sim v$	From 4 and 5 by (v)

Montague thought that any system of modal logic worth the name must include KT, so he concluded that treating necessity as a property of sentences expressed by a predicate "Nec" would lead inevitable to paradoxes. He concluded that, rather than express necessity by a predicate true of the necessary sentences, we should express necessity with a modal operator " \Box ."