Montague’s Theorem

Robinson’s Q:
(Vx) ~Sx =0.
(Vx)(Vy)(Sx =Sy -~ x=y)
(Vx)(x+0) = x.
(VX)(Vy)(x + Sy) = S(x +y).
(Vx)(x:0=0.
(V)(7Y)(x - Sy) = ((x *y) + %)
(Vx)(x<0-x=0)
(Vx)(Vy)(x < Sy = (x <y Vx = Sy)).
(Vx)(Vy)(x <y Vy < X).

Q is much weaker that PA. For instance, it doesn’t prove the commutative law of addition.
Nevertheless, it is strong enough to prove the Self-reference Lemma.

Montague’s Theorem. In the language obtained from the language of arithmetic by addin a new
predicate “Nec” to represent necessity, there isn’t any consistent set of sentences that:

(1) contains the logical consequences of Q;

(i1) contains all sentences of the form (Nec([" ¢ ~ ¢ ]) » (Nec([" ¢ "]) -~ Nec([T ¢ ));

(iii))  contains all sentences of the form (Nec([T @ ']) - @);

(iv)  contains Nec([" ¢ ']) whenever it contains ¢; and

(v) is closed under tautological consequence.

Proof: Suppose I is such a set. The Self-reference Lemma gives us a sentence v such that
(v« ~Nec(["v])) is a consequence of Q. Consequently the following are in I':

1. (~Nec([Tv™]) ~ V) By (i) and (v)

2. (Nec(["v1]~-V) By (iii)

3. v From 1 and 2 by (v)
4. Nec([Tv]) From 3 by (iv)

5. (Nec([Tv™]) » ~V) From (i)

6. ~V From 4 and 5 by (v)

Montague thought that any system of modal logic worth the name must include KT, so he
concluded that treating necessity as a property of sentences expressed by a predicate “Nec”
would lead inevitable to paradoxes. He concluded that, rather than express necessity by a
predicate true of the necessary sentences, we should express necessity with a modal operator
.



