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1 Background

Dynamic semantics was developed independently in the 1980s by Irene Heim
(1982; File Change Semantics) and Hans Kamp (1981; Discourse Representation
Theory).1

1 If you’ve read Yalcin (2013), recall that
Heim’s approach initiated the dynamic
interpretation approach, and Kamp’s ap-
proach initiated the dynamic representation
approach.

Today we’ll be looking at an extremely influential offshoot of Heim’s approach:
Groenendijk & Stokhof’s Dynamic Predicate Logic (dpl).

dpl is a nice theory to look at, since it idealizes away issues arising when giving
a compositional semantics for English, and instead focuses on providing a
dynamic interpretation for a well understood formal language — First Order
Logic (fol).

It also highlights many of the core properties of Heim’s approach in an unusu-
ally clear and elegant fashion.2

2 In the paper, Groenendijk & Stokhof
justify our decision to ignore dynamic
representation approaches in favour of
dynamic interpretation; they prove an
equivalence between dpl and Kamp’s
Discourse Representation Theory (drt),
which means that Kamp’s representational
language is strictly speaking unnecessary in
order to account for the phenomena we’re
interested in.

“The general starting point of the kind of semantics that DPL is an instance of, is
that the meaning of a sentence does not lie in its truth conditions, but rather in
the way it changes (the representation of) the information of the interpreter. The
utterance of a sentence brings us from a certain state of information to another
one. The meaning of a sentence lies in the way it brings about such a transition.”

(Groenendijk & Stokhof 1991: p. 43)

We’ve already seen a theory with character — namely, Veltman’s (1996) propo-
sitional update semantics, which we used to model facts about presupposition
projection.

Despite being arguably the simplest form of dynamic logic, we jumped the gun
historically by starting with propositional update semantics — the original
motivation for the dynamic approach to meaning is the logical relations that
(singular) indefinites and pronouns enter into.

There are two main phenomena which suggest we need to re-think the logical
relationship that indefinites and pronouns enter into: discourse anaphora and
donkey anaphora.
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Discourse anaphora

Indefinites, unlike other quantificational expressions, can seemingly scope
outside of their containing clause:

(1) A1 philosopher attended the talk, and she1 asked some difficult questions.

(2) a. *Every1 philosopher attended the talk,
and she1 asked some difficult questions.

b. *No1 philosopher attended the talk,
and she1 asked some difficult questions.

We might want to assign (1) the schematic Logical Form (lf) below:

(3) ∃𝑥[(phil 𝑥 ∧ 𝑥 attended the talk) ∧ 𝑥 asked some difficult questions]

This seems a bit odd, given that scope-taking is usually strictly clause-bound
(May 1977), but maybe we have to bite the bullet, since indefinites are indepen-
dently known to take exceptional scope:3

3 Brasoveanu & Farkas 2011, Charlow 2014,
a.o.

To illustrate, the following sentence has a reading that can be paraphrased with
the given lf:

(4) If a relative of mine dies, i’ll inherit a fortune.
∃𝑥[relative 𝑥 ∧ ((dies 𝑥) → i’ll inherit a fortune)]

We’ve deflated (1), but more problematically, the facts remain the same, even if
the indefinite and pronoun are located in two different sentences.

(5) A1 philosopher attended the talk. She1 asked some difficult questions.

Perhaps we could posit that, implicitly, this discourse involves logical con-
junction, but it’s difficult to imagine how to analyze this case if we assume
successive assertion.

Indefinites can even bind pronouns in multi-speaker discourses, where syntac-
tic continuity is highly implausible:

(6) a. A: A1 famous philosopher attended my talk.
b. B: Oh? Did she1 ask any especially difficult questions.

Another fact which we’d like to capture: order seems to matter for successful
anaphora:4

4 It’s often suggested that ordering asym-
metries in conjunctive sentences argue in
favour of a dynamic approach:

(7) *She1 attended my talk and a1 famous
philosopher asked some difficult
questions.

This isn’t a good argument — if binding can
be fed by exceptional quantificational scope,
then (7) is already ruled out as a violation
of Weak Crossover (wco) (Postal 1971;
Charlow 2019 makes this same point).

(8) a. A: She1 attended my talk.
b. #B: Oh? Did a1 famous philosopher ask any especially difficult ques-

tions?
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One option, in order to capture discourse anaphora, could be to treat indefi-
nites as referring expressions; we can see that this isn’t going to work however,
as soon as we embed an indefinite under some Downward Entailing (de) oper-
ator.

Binding into its restrictor forces the indefinite to scope below negation,5 in the
5 Due to the Binder Roof Constraint
(Brasoveanu & Farkas 2011).

following; this blocks discourse anaphora.

(9) Nobody1 bought a1 picture of himself. It1 was ugly.

We can account for this if we maintain our standard treatment of indefinites
as existential quantifiers, and suppose that, minimally, discourse anaphora
requires an existential entailment in the first sentence.

Donkey anaphora

As we saw, there is some wiggle room in accounting for discourse anaphora
— the argument that we need to go beyond the classical was however most
pressing in cases of cross-sentential anaphora, or anaphora across a multi-
speaker discourse.

The argument that a classical semantics is insufficient is much more acute for
donkey anaphora:

(10) If a1 farmer owns a2 donkey, he1 feeds it2 hay.

(11) Every farmer who owns a2 donkey feeds it1 hay.

How is anaphora licensed here? We might try the same trick we used last time,
and posit exceptional quantificational scope of the indefinites; this results in the
following lfs:

(12) a. ∃𝑥[farmer ∧ ∃𝑦[donkey 𝑦 ∧ (𝑥 owns 𝑦 → 𝑥 feeds-hay 𝑦)]]
b. ∃𝑦[donkey ∧ ∀𝑥[(farmer 𝑥 ∧ 𝑥 owns 𝑦) → (𝑥 feeds-hay 𝑦)]]

This lfs certainly capture one reading of the previous sentences, but the most
salient reading of (11) is that, every farmer 𝑥, is s.t., 𝑥 feeds every donkey that 𝑥
owns.

The lf in (12b) however predicts that (11) could be true if there’s some donkey
and a farmer that doesn’t own it. This seems all wrong.

That the wide scope lf won’t work becomes especially clear when we force the
indefinite to take narrow scope:
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(13) a. If any1 of these books is censored, I won’t buy it1.
b. Everyone who bought any1 of these books immediately returned it1.

If we give the indefinite narrow scope however, we predict that binding
shouldn’t be successful; in each case the pronoun remains free:

(14) a. (∃𝑥[book 𝑥 ∧ censored 𝑥]) → (I won’t buy 𝑥)
b. ∀𝑥[(∃𝑦[book 𝑦 ∧ 𝑥 bought 𝑦]) → 𝑥 returned 𝑦]

Taken all together, discourse anaphora and donkey anaphora show that the
logical relationship that holds between indefinites and pronouns isn’t either of
the following:

• Coreference.
• Quantifier and the variable it takes scope over.

It must, therefore be something else. Dynamic Semantics (ds) (and more nar-
rowly, dpl) is the attempt to systematically generalize our semantic apparatus
in order to account for these problematic cases.

In order to account for discourse anaphora, we’ll also need to integrate this new
approach to meaning into our pragmatic system — ultimately, we’ll need a new
notion of information state, which goes beyond a classical Stalnakerian setting
(Stalnaker 1976).

Before we go into the technical details, we’ll try to motivate the notion of
information marshalled in a dynamic semantics for anaphora.

1.1 Referential information and subject matter

Worldly information and pronominal licensing

The notion of information state we’ve been assuming — a set of possible worlds
— is too limited in certain respects.

The sentences in (15a) and (15b) express the same information states.

(15) a. Andreea is married.
b. Andreea has a spouse.

But, we can detect a contrast in the following discourses; it seems, they’re not
intersubstitutable.
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(16) a. Andreea is married. I saw ?them/Andreea’s spouse yesterday.
b. Andreea has a husband. I saw them/Andreea’s spouse yesterday.

One way of characterizing this contrast is to say that (16b) is “about” Andreea’s
spouse in a way that (16a) isn’t.6

6 In the literature on anaphora, the re-
quirement that a pronoun have a nominal
antecedent is often referred to as the formal
link condition.

Heim (1982: p. 21) makes a similar point, using some (now, quite famous)
examples attributed to Barbara Partee (p.c.):

(17) a. I dropped ten marbles and found all of them, except for one.
It’s probably under the sofa.

b. I dropped ten marbles and found only nine of them.
?It’s probably under the sofa.

Heim (1982) is worth quoting directly on this point:

“[…] we are compelled to conclude that the salience-shifting potential of an
utterance is not predictable from its truth-conditions and the surrounding
circumstances alone; it moreover depends on how the utterance is worded.”

In a discourse, participants must keep track of more than just what is true/false,
but additionally, what has been mentioned.

Referential information growth

In order to capture this idea, we’ll need a new notion of information. It’s easiest
to illustrate how this works with a concrete example.

(18) Context: we’re playing a guessing game. You have to guess who I’m think-
ing about.
a. I’m thinking of a1 man.
b. He1 was a mathematician.
c. He1 made important contributions to computer science.
d. He1 is British.
e. He1 worked in Bletchley Park, and died in 1952.

As an idealization, we’ll model an information state in which nothing has been
said using the unique initial assignment { 𝑔∅ }.7

7 Throughout, we’ll assume that assignments
are partial.

We can informally think of the pragmatic contribution of each of the assertions
in (18) as inducing a shift in referential information, which we can represent as
a set of partial assignments.
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(19) { [] }
I’m thinking of a1 man
−−−−−−−−−−−−−−−−→

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

[1 → einstein]
[1 → feynman]
[1 → gödel]
[1 → church]
[1 → hoare]
[1 → türing]

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

(20)

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

[1 → einstein]
[1 → feynman]
[1 → gödel]
[1 → church]
[1 → hoare]
[1 → türing]

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

He1 was a mathematician
−−−−−−−−−−−−−−−−−→

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[1 → gödel]
[1 → church]
[1 → hoare]
[1 → türing]

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(21)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[1 → gödel]
[1 → church]
[1 → hoare]
[1 → türing]

⎫
⎪
⎪
⎬
⎪
⎪
⎭

He1 made contributions to comp sci
−−−−−−−−−−−−−−−−−−−−−−−−−→

{
[1 → hoare]
[1 → türing] }

(22)
{

[1 → hoare]
[1 → türing] }

He1 worked in Bletchley Park
−−−−−−−−−−−−−−−−−−−−→ { [1 → türing] }

In a classical Stalnakerian setting, the “points” that make up an information
state are possible worlds, i.e. states of complete information.

Here, our points are assignments: they represent states of complete information
regarding what has been mentioned, but not omniscience about everything that
will ever be mentioned over the course of the discourse!

As such, the kind of information state modelled by a set of assignments doesn’t
just shrink, but it also expands when an indefinite introduces a new variable (we
can see this in the first step).8

8 Technically, this will mean that the kind of
conversation system characterized by dpl is
non-eliminative unlike propositional update
semantics (see Rothschild & Yalcin 2017).2 A dynamic semantics for a simple predicate calculus

Note: the dynamic semantics I give here is a somewhat idiosyncratic presen-
tation of Groenendijk & Stokhof’s (1991) dpl, with ingredients from van den
Berg 1996: ch. 2.

It’s close enough that I’ll simply call it dpl, although one should bear in mind
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that there are some minor differences.9
9 First and foremost, the modelling of
familiarity via partial assignments.

2.1 Syntax

We can characterize the meanings of sentences of English by first giving a
compositional translation procedure into a well-understood logical language 𝕃,
and then providing a semantics for 𝕃.10

10 This is known as indirect interpretation
(Montague 1973), in contrast to direct inter-
pretation theories (Heim & Kratzer 1998).
This is only done here for convenience; 𝕃 is
dispensable.

Just as in our discussion of update semantics (Veltman 1996), we’ll develop
an indirect semantics to illustrate the basic tenets of dynamic semantics for
anaphora.

Since we’re interested in the semantic contribution of, e.g., definite and indef-
inite NPs, we need something more syntactically complex than propositional
logic. Following, Groenendijk & Stokhof (1991), we’ll use a simple first order
predicate calculus.11

11 This will allow us to nicely abstract away
from the niceties of giving a compositional
fragment of English; fol is probably
the syntactically simplest language we
can get away with while still reasonably
approximating natural language.

You should be familiar with translating English sentences into expressions of
fol from intro semantics.12

12 If we’re serious, it’s of course desirable to
make this translation procedure composi-
tional, but this is largely mechanical.

(23) a. Some philosopher is here. ⇝ ∃𝑥[𝑃  𝑥 ∧ 𝐻 𝑥]
b. Every linguist has met Chomsky. ⇝ ∀𝑥[𝐿 𝑥 → 𝑀 𝑥 𝑐]
c. She1 is bored. ⇝ 𝐵 𝑥1

Here’s a terse specification of the syntax of fol:13
13 Intuitively, variables will stand as proxy for
traces and pronouns; individual constants for
names/definite descriptions and predicate
symbols for verbs/adjectives etc.Definition 2.1 (Syntax of fol). Given the following:

• 𝕍 , a non-empty set of variables, 𝑥1, 𝑥2, ….
• ℂ, a non-empty set of individual constants, 𝑎, 𝑏, 𝑐, ….
• ℙ𝑛, a non-empty set of 𝑛-ary predicate symbols, 𝑃 , 𝑄, ….
• 𝕋 , the set of terms: 𝕍 ∪ ℂ.

A first-order language 𝕃 is the smallest set where:

• If 𝑃 ∈ ℙ𝑛, and 𝑡1, …𝑡𝑛 ∈ 𝕋 , then 𝑃  𝑡1…𝑡𝑛 ∈ 𝕃. atomic sentences
• If 𝜙 ∈ 𝕃, then ¬ 𝜙 ∈ 𝕃. negated sentences
• If 𝜙, 𝜓 ∈ 𝕃, then 𝜙 ∧ 𝜓, 𝜙 ∨ 𝜓, 𝜙 → 𝜓 ∈ 𝕃 con/disjunctive & implicational sentences
• If 𝜙 ∈ 𝐿, 𝑥𝑛 ∈ 𝕍 , then ∃𝑥𝑛 𝜙, ∀𝑥𝑛 𝜙 ∈ 𝕃 quantified sentences

This will give us everything we need to reason about the kinds of datapoints we
introduced at the beginning of this handout.
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2.2 Semantics I: From terms to atomic sentences

In order to give a dynamic semantics for fol, we’ll recursively define a (partial!)
interpretation function relative to an assignment J.K𝑔,𝑀 (but we’ll suppress the
model parameter).

For now, a model is simply a tuple ⟨𝐷, 𝐼⟩, where 𝐷 is a non-empty set of indi-
viduals, and 𝐼 is an valuation function, which:

• maps individual constants 𝑐 ∈ ℂ to individuals in 𝐷,
• and maps 𝑛-ary predicate symbols 𝑃 ∈ ℙ𝑛 to 𝑛-tuples of individuals.

Semantics of terms

The interpretation of individual constants is given by the valuation
function. For any individual constant 𝑐 ∈ ℂ:

J𝑐K𝑔 ≔ 𝐼(𝑐)

The interpretation of variables, on the other hand, is assignment depen-
dent. For any variable 𝑥1 ∈ 𝕍 :

J𝑥1K𝑔 ≔
⎧⎪
⎨
⎪⎩

𝑔1 𝑔1  is defined

undefined otherwise

N.b. that this makes J.K𝑔 a partial function.

We can now give a dynamic semantics for atomic sentences.

The idea here is that J.K𝑔 is a function from a sentence of 𝕃 to an output state:
a set of assignment functions. Since we’re not going to attempt to incorporate
an account of presupposition,14 we’re assuming the principle of the excluded

14 We’ll perhaps talk about this next week.middle is valid.
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Semantics of atomic sentences

J𝑃  𝑡1 … 𝑡𝑛K𝑔 ≔

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

{ 𝑔 } ⟨J𝑡1K𝑔 , …, J𝑡𝑛K𝑔⟩ ∈ 𝐼(𝑃 )
∧ J𝑡1K𝑔 , …, J𝑡𝑛K𝑔 are defined

∅ ⟨J𝑡1K𝑔 , …, J𝑡𝑛K𝑔⟩ ∉ 𝐼(𝑃 )
∧ J𝑡1K𝑔 , …, J𝑡𝑛K𝑔 are defined

undefined otherwise

N.b. that if J.K𝑔 is undefined for any term in an atomic sentence, un-
definedness projects; the definedness conditions induced by variables
permeates a weak Kleene logic.

Now is a good time to talk about the pragmatic component of the theory —
we’d like to understand how the kind of semantic object delivered by the theory,
in tandem with an update rule, can capture the referential flow of information
as discussed in the previous section.

So far, we’ve only talked about sentences which stand proxy for English sen-
tences with pronouns and names, but this will still allow us to do some interest-
ing work.

2.3 Pragmatics I: Update

Does it even make sense to talk about pragmatics in the current setting, with-
out introducing possible worlds?

Yes. — although, “pragmatics” is a bit of a misnomer. As a temporary ideal-
ization, we can assume that discourse participants are omniscient regarding
(non-linguistic) worldly facts, we can still use the machinery we’re developing
to model (un)certainty of reference.15

15 We’re already idealizing away to a signifi-
cant extent in standard Stalnakerian setting;
it will be, in any case, easy to reintroduce
possible worlds at a later point.

Let’s take an information state to simply be a set of assignments:

Information states

An information state (also called a context) is a set of assignments,
where:

• ∅ is the absurd information state.
• { 𝑔∅ } is the ignorance state.

N.b. that 𝑔∅ is the unique initial assignment, whose domain is ∅.
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Just as in orthodox Stalnakerian pragmatics, we’ll define an update operation,
which will be a partial function from information states to information states,
subject to the bridge principle.

Update

The update of induced by a sentence 𝜙 is a partial function from infor-
mation states to information states. We write 𝑐[𝜙] for the update of 𝑐
by 𝜙.
Strikingly, this is almost identical to the update rule we used in a static
setting, only instead of worlds, the relevant points are assignments.

𝑐[𝜙] ≔
⎧⎪
⎨
⎪⎩

⋃
𝑔∈𝑐

  J𝜙K𝑔 𝑐 ⊆ 𝜙𝜋

undefined otherwise

Stalnakerian update will do immediate work in deriving Heim’s (1991) notion
of familiarity for pronouns.

First, we need to cash out the notion of semantic presupposition in the current
setting.

Definition 2.2 (Semantic presupposition). The semantic presupposition of a
sentence 𝜙 is written as 𝜙𝜋 :

𝜙𝜋 ≔ { 𝑔 ∣ J𝜙K𝑔 is defined }

Now, let’s consider the interpretation of a sentence with a free pronoun/vari-
able.16

16 Since we’re giving an indirect semantics in
which pronouns are translated as variables,
we can use these terms interchangeably.

She1 left ⇝ J𝐿𝑥1K𝑔 ≔
⎧
⎪
⎨
⎪
⎩

{ 𝑔 } 𝑔1 ∈ 𝐼(𝐿) ∧ 𝑔1 is defined

∅ 𝑔1 ∉ 𝐼(𝐿) ∧ 𝑔1 is defined

# otherwise

We can now clearly see that the semantic presupposition of “she1 left” is the set
of assignments which have 1 in their domain.

(𝐿 𝑥1)𝜋 = { 𝑔 ∣ 𝑔1 is defined }

According to the bridge principle, then, 𝑐[𝐿 𝑥1] is only defined if, for every
𝑔 ∈ 𝑐, 𝑔1 is defined; this is equivalent to Heim’s familiarity condition on
definites.
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More generally, we can say that a variable 𝑥1 is familiar in a context 𝑐, if every
assignment in 𝑐 is defined at 1. A sentence with a free pronoun/variable 𝑥1
therefore presupposes that 𝑥1 is familiar.

A straightforward result is that { 𝑔∅ } [𝐿 𝑥1] is undefined.

To see how a familiarity presupposition can be satisfied, next we’ll give a seman-
tics for existentially-quantified sentences, but first a brief remark on accommo-
dation.

In Stalkarian pragmatics, we talked about a process that minimally changes the
context set, s.t., the presuppositions of a sentence are satisfied: accommoda-
tion.17

17 As we discussed, there are several ways of
conceiving of accommodation, but this will
do for our purposes.Can accommodation sweep in and rescue a case where the familiarity presup-

position isn’t satisfied?

(24) Context: nothing has been said:
# She1 left.

It seems not. The sentences discussed under the rubric of the formal link condi-
tion make the same point.

This is because the speaker has no grounds on which to grow the context in
any particular way in order to satisfy the familiarity presupposition. There are,
however, certain factors which may allow us to do so, such as deixis.

(25) Context: pointing at Susan
She1’s leaving.

The fact that the familiarity presupposition can’t (easily) be accommodated
arguably makes anaphora a more straightforward object of study than presup-
position.

Dynamic semantics bets on anaphora and presupposition projection as involv-
ing the same mechanisms, so this might make us optimistic that anaphora can
independently motivated the kinds of processes we posited in order to account
for presupposition projection.

2.4 Semantics II: Existentially quantified sentences

The semantics of existentials, along with conjunction, is at the heart of what
makes dpl a dynamic theory of meaning, so pay close attention.
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Existentially quantified sentences

In order to compute the value of an existentially quantified sentence
relative to 𝑔, we take each individual 𝑥, and compute the value of the
contained sentence relative to the modified assignment 𝑔[1→𝑥], then we
gather up the results.

J∃𝑥1 𝜙K𝑔 ≔ ⋃
𝑥∈𝐷

J𝜙K𝑔[1→𝑥]

In essence, existentials do two things in dpl:

• The guarantee satisfaction of familiarity by introducing Discourse Referents
(drs).

• They induce uncertainty regarding the identity of a dr.

In order to illustrate, let’s go through a concrete example.

(26) Someone1 left. ∃𝑥1 𝐿 𝑥1

We’ll assume a model with the following properties:

• 𝐷 = { paul, sophie, yasu }
• 𝐼(𝐿) = { paul, sophie }.

(27) Someone1 left ⇝ J∃𝑥1 𝐿 𝑥1K𝑔 = ⋃
𝑥∈𝐷

J𝐿 𝑥1K𝑔[1→𝑥]

For each individual 𝑥, we compute J𝐿 𝑥1K𝑔[1→𝑥]
, and then gather up the results.

(28) a. J𝐿 𝑥1K𝑔[1→paul]
= { 𝑔[1→paul] } (paul ∈ 𝐼(𝐿))

b. J𝐿 𝑥1K𝑔[1→sophie]
= { 𝑔[1→sophie] } (sophie ∈ 𝐼(𝐿))

c. J𝐿 𝑥1K𝑔[1→yasu]
= ∅ (yasu ∉ 𝐼(𝐿))

(29) J∃𝑥1 𝐿 𝑥1K𝑔 = { 𝑔[1→𝑥] ∣ 𝑥 ∈ 𝐼(𝐿) ∧ 𝑥 ∈ 𝐷 }
= { 𝑔[1→paul], 𝑔[1→sophie] }

Existential quantifiers scopally commute

It’s important to define existential quantification in the way that we do to
ensure that existential quantifiers scopally commute.
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∃𝑥1 (∃𝑥2 𝜙) ⇔ ∃𝑥2 (∃𝑥1 𝜙)

We’ll illustrate with a concrete example.

(30) Someone1 criticized someone2. ∃𝑥1 (∃𝑥2 𝐶 𝑥1 𝑥2)

Assume a model with the following properties:

• 𝐷 = { paul, sophie, yasu }
• 𝐼(𝐶) = { ⟨yasu, paul⟩, ⟨sophie, paul⟩ }

(31) Someone1 critized someone2 ⇝ J∃𝑥1 (∃𝑥2 𝐶 𝑥1 𝑥2)K𝑔 = ⋃
𝑥∈𝐷

J∃𝑥2 𝐶 𝑥1 𝑥2K𝑔[1→𝑥]

For each individual 𝑥, we compute J∃𝑥2 𝐶 𝑥1 𝑥2K𝑔[1→𝑥]
:

(32) a. J∃𝑥2 𝐶 𝑥1 𝑥2K𝑔[1→paul]
= { 𝑔[1→paul,2→𝑦] ∣ 𝐶 𝑝 𝑦 } = ∅

b. J∃𝑥2 𝐶 𝑥1 𝑥2K𝑔[1→sophie]
= { 𝑔[1→sophie,2→𝑦] ∣ 𝐶 𝑝 𝑦 } = { 𝑔[1→sophie,2→paul] }

c. J∃𝑥2 𝐶 𝑥1 𝑥2K𝑔[1→yasu]
= { 𝑔[1→yasu,2→𝑦] ∣ 𝐶 𝑝 𝑦 } = { 𝑔[1→yasu,2→paul] }

We can compute the output state of the sentence by gathering these up:

(33) J∃𝑥1 ∃𝑥2 𝐶 𝑥1 𝑥2K𝑔 = { 𝑔[1→𝑥,2→𝑦] ∣ 𝐶 𝑥 𝑦 } = { 𝑔[1→sophie,2→paul], 𝑔[1→yasu,2→paul] }

Indeterminacy

Notice how this captures relative certainty of reference.

(34) { 𝑔∅ } [∃𝑥1 ∃𝑥2 𝐶 𝑥1 𝑥2] =
{ [

1 ↦sophie

2 ↦paul ]
,
[

1 ↦yasu

2 ↦paul] }

An update by “someone1 critized someone2” results in an information state,
where it’s certain that 𝑥2 gets mapped to Paul (since Paul is the only person
who has been critized), whereas it’s uncertain whether 𝑥1 gets mapped to
Sophie or Yasu, since both critized Paul.

A Discourse Referent (dr) is just another way to describe a familiar variable.

We can distinguish between two kinds of dr:

• A dr 𝑥𝑛 is determinate in a context 𝑐 if every assignment in 𝑐 maps 𝑥𝑛 to the
same individual.
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• A dr 𝑥𝑛 is indeterminate in a context 𝑐 otherwise.

As soon as a dr has been introduced/rendered familiar, we can think of the
goal of a discourse as making the dr determinate.

2.5 Pragmatics II: Satisfying familiarity

The semantics we’ve given for existentially quantified sentences guarantees that
the familiarity presupposition of a subsequent, co-indexed free pronoun will be
satisfied.

This is because, a sentence with a free pronoun 𝑥𝑛 presupposes that 𝑥𝑛 is de-
fined throughout 𝑐, and an existentially quantified sentence ∃𝑥𝑛 𝜙 guarantees
that 𝑥𝑛 is defined throughout 𝑐 (as long as there is at least one verifier).

To consider why, let’s give an illustration. Assume a model with the following
properties:

• 𝐷 = { paul, sophie, yasu }
• 𝐼(𝐶) = { ⟨sophie, paul⟩, ⟨yasu, paul⟩ }
• 𝐼(𝐹 ) = { paul, sophie }.

Consider the following discourse.

(35) Someone1 critized Paul. They1 are French.

Updating the initial context with the first sentence results in the following
output state:

(36) { 𝑔∅ } [∃𝑥1 𝐶 𝑥1 𝑝] = { [1 ↦ sophie], [1 ↦ yasu] }

Updating the resulting context with “they1 are French” filters out those assign-
ments which don’t map 𝑥1 to a French person; it is guaranteed to be defined,
since an existential statement guarantees satisfaction of familiarity.

(37) { [1 ↦ sophie], [1 ↦ yasu] } [𝐹  𝑥1] = { [1 ↦ sophie] }

Note, furthermore, that the existential sentence introduces an indeterminate dr;
the subsequent sentence with a co-indexed pronoun makes the dr determinate
by supplying further information.

This should give us a clue as to how to define conjunction, and indeed the other
connectives.
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2.6 Semantics III: Conjunction and Egli’s theorem

Conjunctive sentences

To compute the output set of a conjunctive sentence, we feed the out-
puts of the first conjunct into the second pointwise, and gather up the
results.

J𝜙 ∧ 𝜓K𝑔 ≔ ⋃
𝑔′∈J𝜙K𝑔

J𝜓K𝑔′

Note: since either conjunct can be undefined, we want to make sure
that the grand union operator in the meta-language projects undefined-
ness.

Interestingly, unlike in propositional update semantics, in dynamic semantics
we’re clearly distinguishing between the semantic value of a sentence and the
update it induces.

Update is a pragmatic notion in this setting, so we don’t define conjunction in
terms of successive update.

This actually makes the system more restrictive.18 In order to see why, consider
18 Unlike Veltman’s update semantics, dpl is
distributive.

a different direction for a dynamic semantics: we could’ve decided to define an
interpretation function relative to an information state 𝑐: J.K𝑐 .19

19 This is more like what Heim (1982)
does; in general, a semantics which treats
meanings as transitions from information
states to information states is called an
update semantics.

We would give a semantics for a sentence with a free variable in such a frame-
work as follows. Note that the universal requirement imposed by the bridge
principle must be built directly into the semantics.

(38) J𝐿 𝑥1K𝑐 ≔
⎧⎪
⎨
⎪⎩

{ 𝑔 ∣ 𝑔 ∈ 𝑐, 𝑔1 ∈ 𝐼(𝐿) } ∀𝑔′ ∈ 𝑐[𝑔′
1 is defined]

undefined otherwise

In dpl, this is factored out into the update rule.

Egli’s theorem

Now that we’ve defined existential quantification and conjunction, we’re in a
position to illustrate arguably the core property of dynamic semantics: Egli’s
theorem.

This basically says that an existential in an initial conjunct can take scope over
subsequent conjuncts.
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Egli’s theorem

∃𝑥𝑛 𝜙 ∧ 𝜓 ⇔ ∃𝑥𝑛 (𝜙 ∧ 𝜓)

Let’s go through a concrete case.

(39) Someone1 walked in and she1 sat down. ∃𝑥1 𝑊  𝑥1 ∧ 𝑆 𝑥1

We compute the meaning of the conjunctive sentence by feeding the outputs of
the first conjunct into the second, pointwise, and gathering up the results:

(40) a. J∃𝑥1 𝑊  𝑥1 ∧ 𝑆 𝑥1K𝑔 = ⋃
𝑔′∈J∃𝑥1 𝑊  𝑥1K𝑔

J𝑆 𝑥1K𝑔′

b. = { 𝑔″ ∣ 𝑔″ ∈ J𝑆 𝑥1K𝑔′
 | 𝑔′ ∈ J∃𝑥1 𝑊  𝑥1K𝑔 }

c. = { 𝑔″ ∣ 𝑔″ ∈ J𝑆 𝑥1K𝑔′
 | 𝑔′ ∈ { 𝑔[1↦𝑥] ∣ 𝑥 ∈ 𝐷 ∧ 𝑥 ∈ 𝐼(𝑊 ) } }

d. = { 𝑔[1↦𝑥] ∣ 𝑥 ∈ 𝐼(𝑆) ∧ 𝑥 ∈ 𝐼(𝑊 ) ∧ 𝑥 ∈ 𝐷 }

Now let’s check equivalence according to Egli’s theorem:

(41) Someone1 who walked in sat down. ∃𝑥1 (𝑊  𝑥1 ∧ 𝑆 𝑥1)

(42) a. J∃𝑥1 (𝑊  𝑥1 ∧ 𝑆 𝑥1)K𝑔 = ⋃
𝑥∈𝐷

J𝑊  𝑥1 ∧ 𝑆 𝑥1K𝑔[1↦𝑥]

b. ⋃
𝑥∈𝐷

 
(

⋃
𝑔′∈{ 𝑔[1↦𝑥]∣𝑥∈𝐼(𝑊 ) }

  { 𝑔′ ∣ 𝑔′
1 ∈ 𝐼(𝑆) }

)
c. { 𝑔[1↦𝑥] ∣ 𝑥 ∈ 𝐼(𝑊 ) ∧ 𝑥 ∈ 𝐼(𝑆) ∧ 𝑥 ∈ 𝐷 }

In line with Egli’s theorem, the result is the same.

Random assignment

Now that we’ve defined conjunction, we’ll see it’s possible to get at the heart of
dpl’s treatment of existential quantification.20

20 This section is based on van den Berg
1996: chapter 2.

In order to do so, we’ll add an additional clause to our specification of the
syntax of dpl for the random assignment operator:

• If 𝑥𝑛 ∈ 𝕍 , then 𝜀𝑥𝑛 ∈ 𝕃.

Sentences of the form ⌜𝜀𝑥𝑛⌝ will be interpreted via random assignment:



the dynamic approach to anaphora 17

Random assignment

Random assignment induced by 𝜖𝑥𝑛 introduces a completely indeter-
minate dr 𝑥𝑛.

J𝜀𝑥𝑛K𝑔 ≔ { 𝑔[𝑛→𝑥] ∣ 𝑥 ∈ 𝐷 }

N.b. random assignment is never false; it is essentially a distinguished
tautology that introduces a dr.

Random assignment doesn’t add to the expressive power of dpl, it’s simply a
different way of defining existential quantification:

(43) ∃𝑥𝑛 𝜙 ⇔ 𝜖𝑥𝑛 ∧ 𝜙

Let’s give a concrete illustration:

(44) Someone1 left. ∃𝑥1 𝐿 𝑥1

(45) J∃𝑥1 𝐿 𝑥1K𝑔 = { 𝑔[1→𝑥] ∣ 𝑥 ∈ 𝐼(𝐿) ∧ 𝑥 ∈ 𝐷 }

(46) Someone1 left. 𝜀𝑥𝑛 ∧ 𝐿 𝑥1

(47) a. J𝜀𝑥𝑛 ∧ 𝐿 𝑥1K𝑔 = ⋃
𝑔′∈J𝜀𝑥1K𝑔

  J𝐿 𝑥1K𝑔′

b. = ⋃
𝑔′∈{ 𝑔[1→𝑥]∣𝑥∈𝐷 }

  J𝐿 𝑥1K𝑔′

c. = { 𝑔[1→𝑥] ∣ 𝑥 ∈ 𝐼(𝐿) ∧ 𝑥 ∈ 𝐷 }

Now that we’ve defined random assignment, we can see that Egli’s theorem is
just associativity of conjunction:

Egli’s theorem (alt.)

(𝜀𝑥𝑛  ∧ 𝜙) ∧ 𝜓 ⇔ 𝜀𝑥𝑛  ∧ (𝜙 ∧ 𝜓)

One advantage of random assignment is that it allows us to systematically
divorce dr introduction from indefinites.

Once we give a semantics for equality statments, we can allow names to intro-
duce drs:
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Equality statements

Equality statements are intepreted as tests:

J𝑡1 = 𝑡2K𝑔 ≔
⎧
⎪
⎨
⎪
⎩

{ 𝑔 } J𝑡1K𝑔 = J𝑡2K𝑔 ∧ J𝑡1K𝑔 , J𝑡2K𝑔 are defined

∅ J𝑡1K𝑔 ≠ J𝑡2K𝑔 ∧ J𝑡1K𝑔 , J𝑡2K𝑔 are defined

undefined otherwise

We can take advantage of this to make sense of the idea that definites can
introduce drs.

(48) Susan1 left. 𝜀𝑥1 ∧ 𝑥1 = 𝑠 ∧ 𝐿 𝑥1

(49) a. J𝜀𝑥1 ∧ 𝑥1 = 𝑠 ∧ 𝐿 𝑥1K𝑔 = { 𝑔[1→𝑥] ∣ 𝑥 = susan ∧ 𝑥 ∈ 𝐼(𝐿) ∧ 𝑥 ∈ 𝐷 }
b. = { 𝑔[1→susan] ∣ susan ∈ 𝐼(𝐿) }

Note that definites introduce fully determinate drs.

(50) Context: Susan left:
{ 𝑔∅ } [Susan1 left] = { [1 ↦ susan] }

Why might this be desirable?

Novelty

Another amendment we might like to make is an account of Heim’s (1991)
novely condition,

The novelty condition is often taken to ban index re-use.21 It captures disjoint-
21 Although, as we’ll see when we discuss
Stone disjunctions, it is actually distinct
from such a principle.

ness effects:

(51) *Someone1 walked in and someone1 sat down.

Our definition for existential quantification/random assignment is destructive;
𝑔[1→𝑥] is implicitly assumed to be defined even if 𝑔1 is defined.

In order to capture novelty in a way that percolates through our system, we can
make a very small amendment, and simply assume that 𝑔[1→𝑥] is defined iff 𝑔1
is undefined.

To illustrate, [1 ↦ paul][1↦sophie] is undefined, but [2 ↦ paul][1↦sophie] is
defined.

This means that, e.g., random assignment carries a presupposition.
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Random assignment (revised)

Random assignment induced by 𝜖𝑥𝑛 introduces a completely indeter-
minate dr 𝑥𝑛.

J𝜀𝑥𝑛K𝑔 ≔
⎧⎪
⎨
⎪⎩

{ 𝑔[𝑛→𝑥] ∣ 𝑥 ∈ 𝐷 } 𝑔𝑛 is undefined

undefined otherwise

Via the bridge principle, an indefinite indexed 𝑛 presupposes that 𝑛 is unde-
fined throughout 𝑐.

We don’t need to make any special assumptions about indices in the syntax; we
can simply assume that articles and pronouns are freely assigned indices; possi-
ble indexings are constrained by the need to satisfy novelty and familiarity.

2.7 Semantics IV: Negation and accessibility

If an indefinite can antecede a pronoun, we say that the indefinite is accessible
to the pronoun.

It can be observed that negation renders antecedents inaccessible to subsequent
pronouns.

Case 1: a subsequent pronoun disambiguates the scope of an indefinite:

(52) It’s not true that some1 philosopher is in the audience.
She1’s waiting outside. 7 ¬ > ∃, 3∃ > ¬

Case 2: negative indefinites don’t license (singular) pronominal anaphora.

(53) No philosopher is in the audience. She’s waiting outside.

Case 3: Negative Polarity Items (npis) don’t license prononimal anaphora.

(54) It’s not true that any1 philosopher is in the audience.
# She1’s waiting outside.

• Case 1 will follow straightforwardly from the semantics of negation we’ll
propose here.

• Cases 2 & 3 will follow if (i) we assume that negative indefinites are decom-
poses into a negative and existential component, and (ii) npis are simply
existentials in a de environment.
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Negated sentences

J¬ 𝜙K𝑔 ≔
⎧
⎪
⎨
⎪
⎩

{ 𝑔 } J𝜙K𝑔 = ∅
∅ J𝜙K𝑔 ≠ ∅
undefined otherwise

The idea: when a sentence 𝜙 is negated, we test whether the output ofJϕK𝑔 is the absurd information state. If it is, the test is passed, and we
return the input assignment { 𝑔 }; if the output set is non-empty, the
test fails, and we return the absurd information state; otherwise, the re-
sult is undefined (thus ensuring the familiarity presupposition projects
through negation).
N.b. the similarity to Veltman’s test semantics for epistemic modals.

Another way to see what negation is doing involves definiting dynamic truth
and falsity.

Definition 2.3 (Truth and falsity). We’ll write |.|𝑔 for the classical truth-value
of a sentence, defined as follows:

|𝜙|𝑔 =
⎧
⎪
⎨
⎪
⎩

1 J𝜙K𝑔 ≠ ∅
0 J𝜙K𝑔 = ∅
# otherwise

A negated sentence tests the classical-truth value of the contained sentence.

More technically, a test in dpl is a sentence that always outputs either the
singleton set of the input assignment, or the absurd information state.

Similarly, in update semantics a test was a sentence that always outputs either
the input state or the absurd information state.

A disanalogy is that, in update semantics, tests can be sensitive to properties of
an information state; in dpl, tests can only be sensitive to individual points (i.e.,
assignments).

Interestingly, tests were only useful in update semantics for analyzing modal-
ized sentences; in dpl, tests are completely prevalent; based on what we’ve seen
so far, only existential statements are non-tests.

An illustration

To see how negation renders an indefinite inaccessible, it will pay to go through
a concrete example. Let’s imagine that 𝐷 = { pat }, and 𝐼(𝑃 ) = { pat } , 𝐼(𝐴) =
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∅ and 𝐼(𝑊 ) = { pat }

(55) It’s not true that some1 philosopher is in the audience.
¬ (∃𝑥1 (𝑃  𝑥1 ∧ 𝐴 𝑥1))
# She1’s waiting outside.
𝑊  𝑥1

Let’s begin by updating the initial context with the first sentence:

(56) { 𝑔∅ } [¬ (∃𝑥1 (𝑃  𝑥1 ∧ 𝐴 𝑥1))]

Since the input assignment is a singleton set, we can simply interpret the result
of feeding 𝑔∅ in as the input.

(57) J¬ (∃𝑥1 (𝑃  𝑥1 ∧ 𝐴 𝑥1))K𝑔∅ =
⎧
⎪
⎨
⎪
⎩

{ 𝑔∅ } J∃𝑥1 (𝑃  𝑥1  ∧ 𝐴 𝑥1)K𝑔∅ = ∅
∅ J∃𝑥1 (𝑃  𝑥1  ∧ 𝐴 𝑥1)K𝑔∅ ≠ ∅
undefined otherwise

If we compute the output state of the contained sentence with respect to the
initial assignment, we can see that the result is the absurd information state.

(58) J∃𝑥1 (𝑃  𝑥1  ∧ 𝐴 𝑥1)K𝑔∅ = { 𝑔[1↦𝑥]
∅ ∣ 𝑥 ∈ 𝐼(𝑃 ) ∧ 𝑥 ∈ 𝐼(𝐴) ∧ 𝑥 ∈ 𝐷 } = ∅

This means that the test imposed by negation is passed, which means that we
just get back the ignorance context.

(59) { 𝑔∅ } [¬ (∃𝑥1 (𝑃  𝑥1 ∧ 𝐴 𝑥1))] = { 𝑔∅ }

We don’t need to bother to compute the result of asserting “she1’s waiting
outside”; it’s clear that the familiarity presupposition of the second sentence
won’t be satisfied.

Despite the fact that its motivation is on firm footing, there are some well
known problems with negation in ds involving double negation and disjunction.
We’ll come back to this later today.

2.8 Semantics V: Disjunction

Disjunction
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Disjunctive sentences

Disjunctive sentences are tests: we take the union of the output states
of both disjuncts — if the result is non-empty, the test is passed; if the
result is empty the test is failed (and the result is undefined otherwise).

J𝜙 ∨ 𝜓K𝑔 ≔
⎧⎪
⎨
⎪⎩

{ 𝑔 } J𝜙K𝑔 ∪ J𝜓K𝑔 ≠ ∅
∅ otherwise

N.b. this predicts that disjunction, unlike conjunction is internally static — this
means that an indefinite in an initial disjunct isn’t accessible as a pronoun in a
subsequent disjunct.

(60) ?Either a1 philosopher is outside or she1 is in the audience.

There’s an immediate problem with this semantics for disjunction, it fails to
account for Stone disjunctions.

(61) Either a1 philosopher is outside or a1 linguist is; she1 is smoking.

In order to account for such cases, Groenendijk & Stokhof (1991) posit another
possible entry for natural language disjunction: program disjunction:

Program disjunction

Program disjunction simply gathers up the outputs of the two disjuncts
relative to the input assignment.

J𝜙 ⊻ 𝜓K𝑔 ≔ J𝜙K𝑔 ∪ J𝜓K𝑔

Let’s see how program disjunction accounts for Stone disjunctions in a concrete
case.

(62) Either a1 philosopher is outside or a1 linguist is.
⇝ ∃𝑥1[𝑃  𝑥1 ∧ 𝑂 𝑥1] ⊻ ∃𝑥1[𝐿 𝑥1 ∧ 𝑂 𝑥1]

(63) a. J∃𝑥1[𝑃  𝑥1 ∧ 𝑂 𝑥1] ⊻ ∃𝑥1[𝐿 𝑥1 ∧ 𝑂 𝑥1]K𝑔

b. = { 𝑔[1↦𝑥] ∣ 𝑥 ∈ 𝐼(𝑃 ) ∧ 𝑥 ∈ 𝐼(𝑂) ∧ 𝑥 ∈ 𝐷 }
∪ { 𝑔[1↦𝑦] ∣ 𝑦 ∈ 𝐼(𝐿) ∧ 𝑥 ∈ 𝐼(𝑂) ∧ 𝑥 ∈ 𝐷 }

(64) Context: Chomsky, Foucault, and Lacan are outside smoking
a. { 𝑔∅ } [∃𝑥1[𝑃  𝑥1 ∧ 𝑂 𝑥1] ⊻ ∃𝑥1[𝐿 𝑥1 ∧ 𝑂 𝑥1]]
b. = { [1 ↦ lacan], [1 ↦ foucault] } ∪ { [1 ↦ chomsky] }
c. = { [1 ↦ lacan], [1 ↦ foucault], [1 ↦ chomsky] }

There are a couple of interesting things to note about Stone disjunctions:
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• In order to account for Stone disjunctions and subsequent anaphora using
program disjunction, its crucial that the two indefinites — a linguist and a
philosopher — bear the same index. This is nevertheless compatible with
novelty, since both indefinites are interpreted relative to the same input
assignment.22

22 This account of Stone disjunctions is
however incompatible with an account
of novelty that bans index re-use with
indefinites, such as the account in Heim
1982.

• If the indefinites were contra-indexed, the familiarity presupposition of a
subsequent co-indexed pronoun would fail to be satisfied.

Essentially, we end up treating Stone disjunctions as existential statements with
a complex restrictor.

Note that this correctly predicts that negation renders the Stone disjunction
inaccessible for a subsequent pronoun:

(65) *Neither a1 philosopher nor a1 linguist is outside. He1’s inside smoking.

There are some interesting open questions regarding disjunction, e.g.:

• Under what conditions does natural language or express dpl disjunction vs.
Stone disjunction?

As we’ll see later today, there is still a problem: neither of these entries capture
Partee disjunctions.

3 Donkey sentences and Egli’s corollary

Remember, one of the central empirical motivations for dynamic semantics was
an account of donkey sentences.

(66) If Sarah sees a1 corgi, she pets it1.

(67) Everyone who sees a1 corgi pets it1.

In order to get there, we’ll first need to give a semantics for material implica-
tion, and universal quantification.

Implication
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Implicational sentences

Implicational sentences are tests: we check whether each assignment in
the output state of the antecedent makes the consequent (dynamically)
true. If so, the test is passed; if there is however some assignment in the
output state which makes the consequent (dynamically) false, the test is
failed (and the result is undefined otherwise).

Jϕ → ψK𝑔 ≔
⎧⎪
⎨
⎪⎩

{ 𝑔 } ∀𝑔′[𝑔′ ∈ J𝜙K𝑔 → (J𝜓K𝑔′
≠ ∅)]

∅ otherwise

This entry for implication is externally static (since it’s a test), but internally
dynamic, since assignments in the output state of the antecedent are passed in
as the input of the consequent.

We can see that external staticity is desirable; anaphora is only possible from
out of a conditional if the existential scopes out.

(68) If a1 philosopher is in the audience, I won’t talk.
She1 asks annoying questions. 3 ∃ > if, 7 if > ∃

(69) If I talk for too long, a1 philosopher will ask an annoying question.
She1’s in the audience. 3∃ > if, 7 if > ∃

This is even easier to see via an npi:

(70) If any1 philosopher is in the audience, I won’t talk.
# She1 asks annoying questions.

Donkey sentences

Let’s illustrate how the semantics of implication, in tandem with existentials,
accounts for donkey sentences.

(71) If Sarah sees a corgi, she pets it.
(∃𝑥1𝐶 𝑥1) → 𝑃  𝑥1

23

23 To simplify the computation, we’ll treat
corgi seen by Sarah (𝐶), and petted by Sarah
(𝑃 ) as syntactically simplex predicates. This
is a harmless idealization.

(72) J(∃𝑥1 𝐶 𝑥1) → 𝑃  𝑥1K𝑔 =
⎧⎪
⎨
⎪⎩

{ 𝑔 } ∀𝑔′[𝑔′ ∈ J∃𝑥1 𝐶 𝑥1K𝑔 → (J𝑃  𝑥1K𝑔′
≠ ∅)]

∅ otherwise

Since we’re assuming the excluded middle for predicates, and there are no free
pronouns, the result will always be defined.

(73) =
⎧⎪
⎨
⎪⎩

{ 𝑔 } ∀𝑔′[𝑔′ ∈ { 𝑔[1→𝑥] ∣ 𝑥 ∈ 𝐼(𝐶) ∧ 𝑥 ∈ 𝐷 } → (𝑔′
1 ∈ 𝐼(𝑃 ))]

∅ otherwise
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(74) =
⎧⎪
⎨
⎪⎩

{ 𝑔 } ∀𝑥[𝑥 ∈ 𝐼(𝐶) → 𝑥 ∈ 𝐼(𝑃 )]
∅ otherwise

Note that our theory predicts strong, universal truth-conditions for donkey
sentences; i.e., for (71) to be true, Sarah must pet every corgi that she sees.

This is most certainly a good prediction in this instance, although as we’ll see
later today, this semantics will lead to problems further down the line.

We can give an alternative rendering of the semantics for implicational sen-
tences in terms of a subsethood relation between the output of the antecedent,
and the assignments that make the consequent dynamically true:

Implicational sentences (alt)

J𝜙 → 𝜓K𝑔 ≔
⎧⎪
⎨
⎪⎩

{ 𝑔 } { 𝑔′ ∣ 𝑔′ ∈ J𝜙K𝑔 } ⊆ { 𝑔″ ∣ ∃ℎ[ℎ ∈ J𝜓K𝑔″
] }

∅ otherwise

We’ll informally demonstrate here how this alternative definition works.

(75) If Sarah sees a1 corgi, she pets it1.
(∃𝑥1 𝐶 𝑥1) → 𝑃  𝑥1

• To see whether the test is passed, we first compute the output set of the
antecedent.

• J∃𝑥1 𝐶 𝑥1K𝑔 = { 𝑔[1→𝑥] ∣ 𝑥 ∈ 𝐼(𝐶) ∧ 𝑥 ∈ 𝐷 }
• If the input assignment is 𝑔∅, this might be, e.g., the set of assignments

mapping 1 to corgis Sarah saw: { [1 → 𝑏], [1 → 𝑐] }
• Next, we compute the set of assignments which make the consequent dy-

namically true:
• { 𝑔″ ∣ ∃ℎ[ℎ ∈ J𝑃  𝑥1K𝑔″

] } = { 𝑔″ ∣ 𝑔″
1 ≠ # ∧ 𝑔″

1 ∈ 𝐼(𝑃 ) }
• This is simply any assignment 𝑔″ defined at 1, s.t. 𝑔″

1 was petted by Sarah.
• For the former set to be a subset of the latter, each of the corgis Sarah saw

must be petted by her.

Universal quantification
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Universally quantified sentences

A universally quantified sentence is a test (in fact, it can be defined as
the dual of the existential quantifier). It checks, for each individual
𝑥, if the contained sentence interpreted relative to 𝑔[𝑛→𝑥] returns a
non-empty set. If so, the test is passed.

J∀𝑥𝑛 𝜙K𝑔 ≔
⎧⎪
⎨
⎪⎩

{ 𝑔 } ∀𝑥[J𝜙K𝑔[𝑛→𝑥]
≠ ∅]

∅ otherwise

Like we did with implicational sentences, we can give an alternative formula-
tion of the semantics of universal sentences in terms of subsethood:

Universally quantified sentences (alt.)

J∀𝑥𝑛 𝜙K𝑔 ≔
⎧⎪
⎨
⎪⎩

{ 𝑔 } { 𝑔[𝑛↦𝑥] ∣ 𝑥 ∈ 𝐷 } ⊆ { 𝑔′ ∣ ∃ℎ[ℎ ∈ J𝜙K𝑔′
] }

∅ otherwise

We can simplify this even further, using the definition of random
assignment:

J∀𝑥𝑛 𝜙K𝑔 ≔
⎧⎪
⎨
⎪⎩

{ 𝑔 } J𝜀𝑥𝑛K𝑔 ⊆ { 𝑔′ ∣ ∃ℎ[ℎ ∈ J𝜙K𝑔′
] }

∅ otherwise

Let’s see informally how this works:

(76) Everyone1 who sees a corgi pets it1.
∀𝑥1[(𝜀𝑥2 ∧ 𝐶 𝑥2 ∧ 𝑆 𝑥1 𝑥2) → 𝑃  𝑥1𝑥2]

• To see whether the test is passed, we first compute the result of doing ran-
dom assignment:

• J𝜀1K𝑔 = { 𝑔[1↦𝑥] ∣ 𝑥 ∈ 𝐷 }
• We now compute the set of assignments which make the contained sentence

dynamically true:
• { 𝑔″ ∣ ∃ℎ[ℎ ∈ J(𝜀𝑥2 ∧ 𝐶 𝑥2 ∧ 𝑆 𝑥1 𝑥2) → 𝑃  𝑥1𝑥2K𝑔″

] }
• This is all those assignments 𝑔″ that are defined at 1, such that 𝑔″

1 petted
every corgi that 𝑔″

1 saw (from the semantics of implicational sentences).
• For the former set to be a subset of the latter, everyone in the domain must

be s.t. they petted every corgi that they saw.
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Egli’s corollary

(∃𝑥1 𝜙) → 𝜓 ⇔ ∀𝑥1 (𝜙 → 𝜓)

In terms of random assignment:

(𝜀𝑥1 ∧ 𝜙) → 𝜓 ⇔ ∀𝑥1(𝜙 → 𝜓)

From Egli’s corrolary our Corgi sentence is equivalent to universally quantify-
ing over people and corgis:

(77) ∀𝑥1[(𝜀𝑥2 ∧ 𝐶 𝑥2 ∧ 𝑆 𝑥1 𝑥2) → 𝑃  𝑥1𝑥2]
⇔ ∀𝑥1∀𝑥2[(𝐶 𝑥2 ∧ 𝑆 𝑥1 𝑥2) → 𝑃  𝑥1 𝑥2]

4 Problems, prospects, and extensions

4.1 Double negation and bathroom sentences

Double negation

In ds, negation is a destructive operation; it obliterates any drs in its scope
since, the output state of the contained sentence is, essentially, closed.

This makes a pretty strong prediction; double negation elimination should not
be valid, unlike in a classic setting.

We can illustrate this be giving a concrete example:

(78) It’s not true that nobody left. ¬ (¬ ∃𝑥1 𝐿 𝑥1)

Let’s compute the meaning of the sentence in ds:24
24 As usual, we ignore undefinedness since
there are no free variables.

(79) J¬ (¬ ∃𝑥1 𝐿 𝑥1)K𝑔 =
⎧⎪
⎨
⎪⎩

{ 𝑔 } J¬ ∃𝑥1 𝐿 𝑥1K𝑔 = ∅
∅ otherwise

(80) =
⎧⎪
⎨
⎪⎩

{ 𝑔 } J∃𝑥1 𝐿 𝑥1K𝑔 ≠ ∅
∅ otherwise

(81) =
⎧⎪
⎨
⎪⎩

{ 𝑔 } { 𝑔[1→𝑥] ∣ 𝑥 ∈ 𝐼(𝐿) ∧ 𝑥 ∈ 𝐷 } ≠ ∅
∅ otherwise
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(82) =
⎧⎪
⎨
⎪⎩

{ 𝑔 } ∃𝑥[𝑥 ∈ 𝐷 ∧ 𝑥 ∈ 𝐼(𝐿)]
∅ otherwise

If we just take the conditions under which the doubly negated sentence is true,
then this is equivalent to the conditions under which its positive counterpart
are true; namely, just so long as 𝐼(𝐿) ≠ ∅:

(83) J∃𝑥1 𝐿 𝑥1K𝑔 = { 𝑔[1→𝑥] ∣ 𝑥 ∈ 𝐼(𝐿) ∧ 𝑥 ∈ 𝐷 }

However, if we compare (82) and (83), we can see that the output states are not
the same; the doubly-negated sentence is a test, whereas its positive counterpart
introduces 𝑥1 as a dr.

It was already noted by Groenendijk & Stokhof that this is a problem, and
indeed it seems to make bad predictions for anaphora.

(84) It’s not true that no philosopher registered; she1’s sitting at the back.

Anaphora from doubly-negated sentences seems to be subject to poorly under-
stood constraints; Gotham (2019) (see also Krahmer & Muskens 1995) claims
that there is an associated uniqueness inference.25

25 The following examples are based on
Gotham 2019.

(85) Context: The speaker knows that John owns more than one shirt.
a. John owns a1 shirt. It1’s in the wardrobe.
b. ??It’s not true that John doesn’t own a1 shirt; It1’s in the wardrobe!

As I note in Elliott 2020, anaphora from under double negation is compatible
with a plural pronoun, just so long as it picks up a maximal dr. This is a puzzle
for uniqueness.

(86) John doesn’t own no1 shirt. They1’re in the wardrobe.

The validity of Double Negation Elimination (dne) with respect to anaphora
might be taken to show that dpl strays too far from the classical; if Gotham is
correct however, we might not want to reinstate ¬ (¬ 𝜙) ⇔ 𝜙 wholesale.

Bathroom sentences

There’s a related problem with involving disjunctive sentence.

First, think back to the Heim/Karttunen projection generalization for disjunc-
tive sentences.

(87) Either there is no bathroom, or the bathroom is upstairs.
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(87) is presuppositionless, because the presupposition of the second disjunct
(that there is a bathroom), is locally satisfied; in update semantics, a subsequent
disjunct is interpreted relative to the negation of the initial disjunct.

We can make a completely parallel observation with anaphora.

(88) Either there is no1 bathroom, or it1’s upstairs.

The entry for disjunction we’ve given here, based on Groenendijk & Stokhof
(1991), is both externally and internally dynamic, so it has no chance at all of
accounting for the possibility of anaphora in (88).

Our entry for disjunction predicts that the test imposed by (88) is passed if
the union of output states of the first and second disjuncts is non-empty; the
disjunctive sentence should therefore inherit the definedness conditions of it’s
upstairs, which contains a free variable.

An intuitive thought is that a subsequent disjunct is interpreted in the context
of the negation of the first, just like in our update semantic entry for disjunction
(Beaver 2001), so the problem of (88) is reduced to accounting for anaphora in
the following:

(89) Either there is no1 bathroom,
or (there isn’t no1 bathroom and) it1’s upstairs.

This, naturally, reduces the problem of anaphora in bathroom sentences to the
problem of dne more generally.

Similarly, Gotham (2019) claims that anaphora in bathroom sentences comes
with an associated uniqueness inference.

(90) Context: the speaker knows that, if John owns any shirts, he owns more
than one.
# Either John has no1 shirt, or it1’s in the wardrobe.

This receives a natural explanation, if the account of anaphora in bathroom
sentences is parasitic on the account of dne.

The data is somewhat unclear however; Krahmer & Muskens (1995) develop an
account of bathroom sentences that ascribes them universal truth-conditions,
just like donkey sentences; for them, (88) is true just so long as there is no
bathroom that isn’t upstairs (there may be multiple bathrooms).

In essence, the idea is to reduce the bathroom sentence to the following para-
phrase:
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(91) Either there is no1 bathroom, or (if there isn’t no1 bathroom, then) it1’s
upstairs.

There are a number of accounts of dne and bathroom sentences in the litera-
ture which depart to a lesser or greater extent from dpl: see Rothschild 2017
and Mandelkern 2020b,a for a significant departure, and Krahmer & Muskens
1995, Gotham 2019, Elliott 2020 for accounts which more closely toe the line.26

26 For anyone who’s interested in this
problem (I think it would make an excellent
squib topic), there’s an extremely useful
discussion in van den Berg (1996: ch. 2).

4.2 Generalized quantifiers and the proportion problem

dpl with quantifiers

dpl is quite limited in its expressive power — we’re not in a position to analyze
the broader range of environments in which donkey anaphora is possible.

(92) Most people who see a1 corgi pet it1.

(93) Few people who see a1 corgi pet it1.

(94) Usually, a person who sees a1 corgi pets it1.

In order to account for determiners, we need to go beyond dpl. We can mini-
mally extend the syntax of 𝕃, in the following way:

• Let ℚ be a non-empty set of determiners.
• If 𝑄 ∈ ℚ, 𝑥𝑛 ∈ 𝑉 , 𝜙, 𝜓 ∈ 𝕃, then 𝑄𝑥𝑛 𝜙 𝜓 ∈ 𝕃.

Note that we’re treating determiners as (two-place) sentential operators, which
come with a binding index.

Semantics for quantified sentences

N.b. the semantics that we’ll give for quantified sentences is called an unselec-
tive semantics, for reasons which will become clear.

Let’s assume that the valuation function 𝐼 maps determiners to conservative
binary relations between sets of individuals (i.e., generalized quantifiers).

Remember our semantics for universal sentences, in terms of subsethood? This
will help us give a general recipe for quantified statements:
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Unselective semantics for quantified sentences

To compute the output of a quantified sentence 𝑄𝑛 𝜙 𝜓 , we must
compute two sets: (i) the restrictor set is the outputs of the restrictor
𝜙 interpreted in the context of 𝑛-indexed random assignment. (ii)
the matrix set is the set of inputs that make the matrix sentence 𝜓 dy-
namically true. The quantified sentence 𝑄𝑛 𝜙 𝜓 is a test that checks
whether a set-theoretic relation delivered by the valuation function
holds between these two sets.

J𝑄𝑥𝑛 𝜙 𝜓K𝑔

≔
⎧⎪
⎨
⎪⎩

{ 𝑔 } J𝜀𝑥𝑛 ∧ 𝜙K𝑔 𝐼(𝑄) { 𝑔′ ∣ ∃ℎ[ℎ ∈ J𝜓K𝑔′
] }

∅ otherwise

We can check that this makes the right predictions for donkey anaphora in
universal statements.

(95) Everyone who sees a1 corgi pets it1

We’ll translate this into a quantified sentence as follows:27
27 As discussed by Heim (1982), these logical
forms can be constructed compositionally
by scoping out the determiner.(96) every1 (𝜀𝑥2 ∧  𝑆 𝑥1 𝑥2) (𝑃  𝑥1 𝑥2)

(97) Jevery1 (𝜀𝑥2 ∧  𝑆 𝑥1 𝑥2) (𝑃  𝑥1 𝑥2)K𝑔

=
⎧⎪
⎨
⎪⎩

{ 𝑔 } J𝜀𝑥1 ∧ 𝜀𝑥2 ∧ 𝑆 𝑥1 𝑥2K𝑔 ⊆ { 𝑔′ ∣ ∃ℎ[ℎ ∈ J𝑃  𝑥1 𝑥2K𝑔′
] }

∅ otherwise

In order to see if the test is passed, we first compute the restrictor set — this
gives back the set of modified assignments 𝑔[1↦𝑥,2↦𝑦], such that 𝑥 saw 𝑦.

(98) J𝜀𝑥1 ∧ 𝜀𝑥2 ∧ 𝑆 𝑥1𝑥2K𝑔 = { 𝑔[1↦𝑥,2↦𝑦] ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐼(𝑆) }

Now we compute the matrix set — this gives back the set of assignments 𝑔′

defined for 1, 2, such that 𝑔′
1 petted 𝑔′

2.

(99) { 𝑔′ ∣ ∃ℎ[ℎ ∈ J𝑃  𝑥1 𝑥2K] } = { 𝑔′ ∣ 𝑔′ ≠ #, ⟨𝑔′
1, 𝑔′

2⟩ ∈ 𝐼(𝑃 ) }

In order for the restrictor set to be a subset of the matrix set, it must be the
case that each modified assignment 𝑔[1↦𝑥,1↦𝑦] in the restrictor set is s.t. 𝑥
petted 𝑦; if this does not hold for some assignment in the restrictor set, then the
subsethood relation fails to hold.

This elegant semantics for quantified sentences is essentially the semantics
given for adverbs of quantification in Groenendijk & Stokhof 1991 and (implic-
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itly) in Heim 1982, but it runs into two well-known problems: the proportion
problem and the distinction between weak and strong readings.

The proportion problem

Now, let’s consider what happens when we combine donkey anaphora with the
determiner most:28

28 We assume here thatmost meansmore
than half, although this is of course a
simplification.(100) Most people who see a corgi pet it. ⇝

most1 (𝜀𝑥2 ∧ 𝐶 𝑥2 ∧ 𝑆 𝑥1 𝑥2) (𝑃  𝑥1 𝑥2)

Let’s compute the restrictor set relative to an input 𝑔, and the matrix set as
usual:

(101) Restrictor set relative to 𝑔:
{ 𝑔[1↦𝑥,2↦𝑦] ∣ 𝑦 ∈ 𝐼(𝐶) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐼(𝑆) }

(102) Matrix set:
{ 𝑔′ ∣ 𝑔′

1, 𝑔′
2 ≠ # ∧ ⟨𝑔′

1, 𝑔′
2⟩ ∈ 𝐼(𝑃 ) }

For the test imposed by the quantified sentence to be successful, more than half
⟨𝑥, 𝑦⟩ pairs, s.t. 𝑦 is a corgi and 𝑥 sees 𝑦, should be such that 𝑥 pets 𝑦.

As many have remarked29, it’s easy to come up with scenarios to demonstrate
29 See, e.g., Partee 1984, Kadmon 1987,
Rooth 1987, and Heim 1990.

that this gets the truth-conditions of the English sentence wrong.

Let’s say that three people — Sarah, Josie, and Alex — saw corgis:

• Sarah went to a dog park, and saw 10 corgis (𝑐1, …, 𝑐10) — she petted all of
them.

• Josie and Alex each saw one corgi (𝑐1 and 𝑐2 respectively), but didn’t pet
them.

We can list all the ⟨𝑥, 𝑦⟩ pairs such that 𝑦 is a corgi, and 𝑥 saw 𝑦. I’ve high-
lighted those pairs also in a petting relationship:

⎧⎪
⎨
⎪⎩

⟨𝑗, 𝑐1⟩, ⟨𝑎, 𝑐2⟩,
⟨𝑠, 𝑐1⟩, ⟨𝑠, 𝑐2⟩, ⟨𝑠, 𝑐3⟩, ⟨𝑠, 𝑐4⟩, ⟨𝑠, 𝑐5⟩,
⟨𝑠, 𝑐6⟩, ⟨𝑠, 𝑐7⟩, ⟨𝑠, 𝑐8⟩, ⟨𝑠, 𝑐9⟩, ⟨𝑠, 𝑐10⟩,

⎫⎪
⎬
⎪⎭

It’s pretty clear then, that our truth conditions predict that the sentence should
be true, but it’s intuitively false in this scenario.
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The problem amounts to the fact that we end up quantifying over person-corgi
pairs, rather than individuals.

Weak vs. strong donkeys

Consider the classic donkey sentence below — our entry for first-order univer-
sal quantification, and also every as a generalized quantifier predict it to have
strong, universal truth conditions.30

30 Apologies for the animal cruelty; I
regrettably need to use this example to
repeat Chierchia’s reasoning.(103) Every1 farmer who owns a2 donkey beats it2.

⇝ every1 (𝜀𝑥2 ∧ 𝐷 𝑥2  ∧ 𝐹  𝑥1 ∧ 𝑂 𝑥1 𝑥2) (𝐵 𝑥1 𝑥2)

Concretely, we predict this to be true iff each farmer is s.t. they beat each
donkey that they own.

However, donkey sentences can receive a so-called “weak” reading too. Con-
sider the following context from Chierchia 1995:

The farmers under discussion are all part of an anger management program, and
they are encouraged by the psychotherapist involved to channel their aggressive-
ness towards their donkeys (should they own any) rather than towards each other.
The farmers scrupulously follow the psychotherapist’s advice.

(104) ...every farmer who owns a donkey beats it.

In the context, this is true just so long as each farmer is s.t. they beat some
donkey that they own.

Even more convincingly, there are donkey sentences for which the weak read-
ing is the most salient:

(105) Every person who has a11 dime will put it1 in the meter.

(106) Yesterday, every person who had a1 credit card paid his bill with it1.

The unselective analysis can’t account for this reading.

The solution to both of these problems involves formulating a selective se-
mantics for generalized quantifiers that relates sets of individuals rather than
information states.

We won’t go through how to do this in class (although if there’s a demand for it,
I can discuss how to solve this problem next week), but see, e.g., Chierchia 1995
and Kanazawa 1994.31

31 Probably the simplest way of doing
this is by formulating an object language
abstraction operator 𝜆𝑛, and defining
dynamic GQs as relating functions from
individuals to dynamic propositions, e.g.

(107) Most farmers who own a2 donkey
beat it2.
most (𝜆1 (𝜀𝑥2 ∧ 𝐷 𝑥2 ∧ 𝐹  𝑥1  ∧ 𝑂 𝑥1 𝑥2))
 (𝜆3 (𝐵 𝑥3 𝑥2))
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Next time

Next week I’ll discuss dynamic treatments of anaphora and explanatory
adequacy — reading is Mandelkern 2020b.
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