Edit Doron

1. Introduction

Relative clauses in many languages have resumptive pronouns where English would have a gap. Hebrew is one such language. A conceivable way of approaching resumptive pronouns is to say that they are syntactically of the same category as gaps, and that they get the same semantic translation. The only difference would be that certain gaps get "spelled out" as pronouns. Approaches along these lines can be found in Borer (1979), Engdahl (1979) and Maling and Zaenen (1980). The same is also suggested in Gazdar (1980) and Peters (1980).

According to the analysis I will propose here, resumptive pronouns are syntactically and semantically pronouns, and they differ in both these respects from gaps. One very simple piece of evidence in favour of my approach is that languages that make use of resumptive pronouns use the same inventory available to them for other pronouns. Another simple fact is the following sentence (from Maling and Zaenen (1980) ftn. 20):

 This is the woman that John said that she and Bill are having an affair.

According to Maling and Zaenen, the corresponding sentences in Scandinavian languages and in Irish are good sentences. The corresponding sentence in Hebrew is also perfectly good.

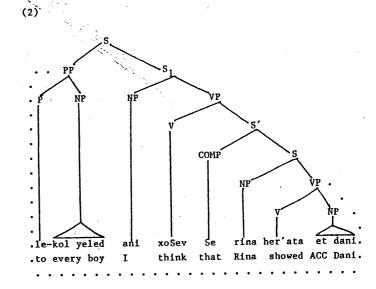
The pronoun $\underline{\mathsf{she}}$ in (1) is a resumptive pronoun. If it were

⁰I am grateful to Charles Kirkpatrick for many stimulating conversations on topics related to this paper, for carefully reading a previous version, and for presenting me with detailed comments and valuable suggestions. I am grateful to Lauri Karttunen for discussing with me the data and preliminary ideas, and for many helpful suggestions. I also wish to thank Akira Kurahone and Stanley Peters for related discussions.

syntactically a gap, it would be, in Gazdar's (1981) notation, of category NP/NP, and therefore not conjoinable to the NP Bill. Under my approach we simply have here a conjunction of two NPs.

In section 2 I will present a fragment of Hebrew with relative clauses. In this fragment, gaps are phonological realizations of "links", whereas resumptive pronouns are nondistinguishable syntactically and phonologically from other pronouns. Semantically, what gets used in the translation of a sentence in place of a gap is a variable p_i , and the meaning of the gap's antecedent is kept in a store together with the index i of the variable. Resumptive pronouns on the other hand get the same translation as other pronouns (i.e. PP(x,)), but for the fact that the index i is also kept in a store. The rules of storage retrieval will be different for gaps and for resumptive pronouns.

In section 3, I will show how the fragment handles syntactic and semantic differences between sentences with gaps and sentences with resumptive pronouns. Approaches that conflate gaps and resumptive pronouns would need ad-hoc machinery to account for such differences.


In section 4, I will show how the system developed in this paper accounts for the distribution of resumptive pronouns observed by Maling and Zaenen (1980) and by Engdahl (1979, 1980) in the Scandinavian languages. I will also show why my system is to be preferred to the ones proposed by these authors.

2. The Fragment

The rules for a fragment of Hebrew with relative clauses are given in Appendix A. The syntactic categories used are S' (S bar), S, VP, NP, PP etc.. I also use syntactic features such as [+tense], [+present] to account for the fact that VP complements are infinitival (cf. S3 b) and that there is a "rule of pro drop" when the VP is not in the present tense (cf. S1 b).

The grammar in Appendix A is an example of what has been called "phrase linking grammar" by Peters (1980, 1981). In a phrase linking grammar rules are interpreted as node admissibility conditions on data structures richer than the familiar trees. structures that Peters calls "linked trees". For a definition of linked trees see Appendix A. An example of a linked tree for a

topicalized sentence is shown in (2).1

The PP in (2) is an example of a "dislocated element" (see Appendix A). The link enables the PP node to participate in satisfying both rules S2 and S8, repeated here as 3 and 4:

 $[v_P \lor (x_{P_1} ... x_{P_n})]$ where XP_1 is NP or PP, and $XP_1 = PP$ for $1 < i \le n$

(4) [XP S] (Topicalization)

Since show is subcategorized for both an NP and a PP complement, the structure in (2) would be starred by the grammar if it didn't have the link. Figuratively speaking, the link enables the PP node to "be" at two places in the tree at the same time.

¹The indexing of nodes in trees is done purely for expository purposes and has no theoretical significance.

When the linked tree in (2) is interpreted by the phonological component, the link is dissolved, and a phonologically null element (gap) is the realization of the missing daughter of VP. We will now see how the semantic component interprets linked trees.

First notice a general convention in my system, adopted only for the sake of simplifying the translations: all NPs and PPs that a verb is subcategorized for are translated as arguments of that verb. (No other PPs appear in the fragment.) Prepositions are therefore treated as semantically void, and translations of PPs are of the same type as of NPs (see T2 and T5 in Appendix B).

A general feature of my system is stated in Appendix B as the "Translation Convention". It states that the translation X' of every syntactic category X is a triplet. The first coordinate of the triplet is called the "head" of X' (hX'), and consists of the familiar translation into IL. The second coordinate is basically Cooper's store as proposed in Cooper (1975), which I call "quantifier store" (following Bach and Partee (1980)). The third coordinate is the set of indices of the potential resumptive pronouns encountered so far in the translation, and I call it "resumptive-pronoun store". Notice that clause B of the Translation Convention ensures that only translations of the form (hS',0,0) "count" for sentences, i.e. all stores must be empty at the end of the translation.

For the sentence in (2) to end up having an interpretation, the dislocated PP must be assigned the following translation:

$$\langle p_i, \{\langle \widehat{P}Ax[boy'(x)--\rangle P\{x\}], i\rangle\}, 0\rangle.$$

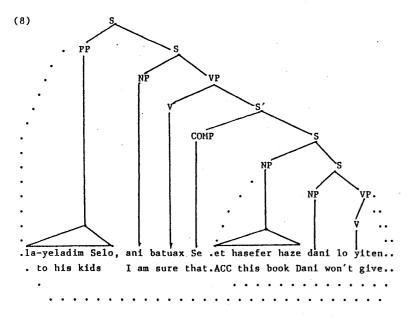
 p_1 is the i-th variable that ranges over properties of properties of individuals. $\{\widehat{CPAx}[boy'(x)-->P\{x\}],i>\}$ is the quantifier store, where the familiar meaning of the NP every boy has been stored, together with the index of p_1 . The resumptive-pronoun store in this case is 0. This translation of PP is used when translating S_1 :

(5)
$$S_{1}' = \langle \text{think'}(x_{0}, \hat{p}_{1}) \rangle, \{\langle \hat{P}Ax[boy'(x) - P\{x\}], i \rangle\}, 0 \rangle$$

This is the same translation that the sentence would have were the PP a "real" daughter of VP, whose meaning is stored (see the NP Storage Convention in Appendix B).2

We can now apply the A clause of T8 in Appendix B, which will quantify in the meaning of PP that was kept in store: 3

- (6) S' = $\langle [\tilde{p}_1 \text{think}'(x_0, \hat{p}_1)] \rangle (\hat{P} \text{Ax}[boy'(x) P\{x\}]), 0, 0 \rangle$
 - = $\langle \text{think'}(x_0, \hat{p}) \rangle \langle (r,d,\hat{p}) \rangle \langle (x) -- \rangle \langle (x) \rangle \rangle$
 - = $\langle \text{think'}(x_0, ^Ax[boy'(x)-->show'_*(r,d,x)]),0,0 \rangle$


The rule we have just applied "lowers" the meaning of PP into the scope of think. This is different from the outcome of the Store Retrieval Convention of Appendix B, that gives stored meanings scope over the whole sentence. Notice that nothing prevents us from applying this convention to (5), to get another meaning of \mathbf{S}_1 :

(7)
$$S_1' = \langle \widehat{P}Ax[boy'(x) -- \rangle P\{x\}] (\hat{x}_1[\widehat{p}_1 think'(x,\hat{s}how'(r,d,p_1)] (\hat{P}P\{x_1\})),0,0 \rangle$$

= $\langle Ax[boy'(x) -- \rangle think'(x0,\hat{s}how'_{*}(r,d,x)],0,0 \rangle$

But now neither clause A nor clause B of T8 is applicable to combine PP' with $\mathbf{S_1}$ ', so we cannot get from this a meaning for S. The following example shows that Hebrew allows multiple gaps.

²Notice that there would have been differences in implicatures were PP a "real" daughter of VP rather than being topicalized as in (2). Since I shall only be interested in the truth-conditional aspects of meaning, matters of implicatures will not be represented in my translations. See Karttunen and Peters (1979) for how this could be done.

³The notational convention I use for brackets is that brackets go around the lambda expression and its scope. I shall not write the outmost brackets in a formula, nor brackets that are immediately contained in parentheses.

The following too is grammatical:

(9) et hasefer haze, ani batuax Se la-yeladim Selo dani ACC this book I am sure that to his kids Dani lo yiten won't give

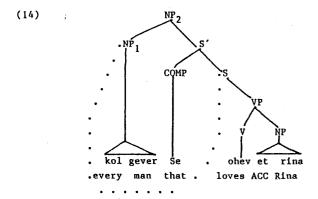
For dealing with (8) and (9) phrase linking grammars are clearly superior to Gazdar's grammars. Gazdar would have to allow at this point an infinite number of multiply slashed categories and an infinite number of derived rules, since there is no principled way to fix an upper bound on the number of gaps. (See Engdahl (1980) for an elaboration on this point). Hebrew certainly allows for three gaps and more, though of course the examples become less natural the greater the number of gaps:

(10) et hasmartutim haele₁ ani lo mevin ex₂ be-mea

ACC this junk₁ I don't understand how₂ for 100

dolar₃ miSehu hicliax ____2 limkor ____1 ___3

dollars₃ anybody succeeded to sell

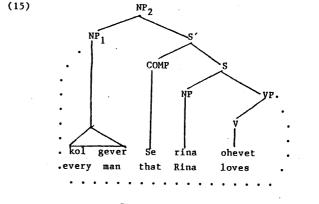

(11)	et hasmartutim haele ₁ , dani amar Se la-Saxen	
	ACC this junk Dani said that to the stingy	
	hakamcan ₂ hu lo mevin ex ₃ be-mea neighbour ₂ he doesn't understand how ₃ for 100	
	dolar ₄ miSehu hicliax3 limkor12dollars ₄ anybodysucceded to sell	4
(12)	mimi _l dani amar Se et hasmartutim haele	≘ ₂ ·
	from whom 1 Dani said that ACC this junk 2	-
	hu lo mevin ex ₃ be-mea dolar ₄ et m	ina
	he doesn't understand how ₃ for 100 dollars ₄ ACC F	-
	hiclaxta3 leSaxnea5 liknot21 -	
	you succeeded to convince to buy	

A Gazdar grammar revised to account for multiple gaps generates non-context-free languages just as phrase linking grammars do (both apparently generate small supersets of the context-free languages), but is in great disadvantage where the semantic interpretation is concerned. For it has no way to ensure that the right dislocated element gets quantified in for the right variable in (8) and (9). A solution to this problem, suggested by Maling and Zaenen (1980), would account only for (8) and not for (9):

Maling and Zaenen are simply stating in (13) that all dependencies involving gaps are nested, a generalization that (9) shows to be false. There are also examples in Norwegian and in Icelandic that falsify (13), as we shall see in section 4.

Let us now turn to relative clauses. Hebrew relative clauses are formed with NP gaps in subject or direct object position alternating with resumptive pronouns. No preposition stranding is

allowed, therefore resumptive pronouns are obligatory when relativizing on indirect object position. The examples in (14) and (15) involve gaps in subject and object positions respectively.



= $\langle p_i, \{\langle \hat{P}Ay[man'(y) \& R\{y\}--\rangle P\{y\}], i\rangle \}, 0\rangle$ = <love'(^PP{r}),0,0>

= $\langle p_i \{^1 \text{love'}(^{\hat{P}P}\{r\})\}, qsNP_1', 0 \rangle$

Since S' and NP' have an element in common in their quantifier stores (actually they happen to have identical quantifier stores) the A clause of T6 can be used to get a translation of NP2. What this rule does is first to change the NP in store: PAy[man'(y) & $R\{y\}\longrightarrow P\{y\}$ into $RAy[man'(y) \& R\{y\}\longrightarrow P\{y\}]$ (so that the property that the NP eventually combines with will replace R rather than P), and then replaces p_i in S' by this NP.

$$\begin{aligned} NP_2' &= \langle P[\widehat{p}_1 p_1 \{ ^1 \text{love'}(^{\widehat{P}P} \{ r \}) \}] (^{\widehat{R}}[\widehat{P}Ay[\text{man'}(y) \& R\{y\} \\ &- \rangle P\{y\}]] (P)), 0, 0 \rangle \\ &= \langle \widehat{P}[\widehat{R}Ay[\text{man'}(y) \& R\{y\} -- \rangle P\{y\}]] (^1 \text{love'}(^{\widehat{P}P} \{ r \})), 0, 0 \rangle \\ &= \langle \widehat{P}Ay[\text{man'}(y) \& \text{love'}(^{\widehat{P}P} \{ r \}) (y) -- \rangle P\{y\}], 0, 0 \rangle \\ &= \langle \widehat{P}Ay[\text{man'}(y) \& \text{love'}_*(y, r) -- \rangle P\{y\}], 0, 0 \rangle \end{aligned}$$

 $\langle p_i, \{\langle \widehat{P}Ay[man'(y) \& R\{y\}--\rangle P\{y\}\}, i\rangle \}, 0\rangle$

= <love'(p₁),qsNP₁',0>

= $\langle \widehat{PP}\{r\}(\widehat{1}\text{ove}'(p_1)), qsNP_1', 0 \rangle$

 $= \langle \text{love'}(\mathbf{r}, p_1), \text{qsNP}_1', 0 \rangle$ $NP_2' = \langle \widehat{P}[\widehat{p}_1|\text{love'}(\mathbf{r}, p_1)](\widehat{R}[\widehat{P}Ay[\text{man'}(y) \& R\{y\}-->P\{y\}]](P)), 0, 0 \rangle$

<Plove'(r, RAy[man'(y) & R{y}-->P{y}]),0,0>

= $\langle \widehat{P}Ay[man'(y) \& love'_{\star}(r,y) -- \rangle P\{y\}],0,0 \rangle$

I now give examples of relative clauses with resumptive pronouns. Parallel to (15) we have (16), where we see how the resumptive-pronoun-store is used. This store is similar to the pronoun-store that Bach and Partee (1980) argue is needed to account for anaphora. The difference is that in my system the index of a variable used in translating a pronoun is only optionally stored. Any pronoun is potentially resumptive, and the system has the option to make it a resumptive pronoun by storing the index of the variable used in its translation. This index will be used to quantify in the meaning of the head NP over the right variable, according to rules T6. or T7. Notice that the translation of a pronoun in this system has $\widehat{PP}\{x_i\}$ as its head, whereas the translation of a gap has ${}^{\nu}p_{i}$ as its head.

 $NP_{1}' = \langle \widehat{P}P\{x_{1}\}, 0, \{1\} \rangle$

VP' = $\langle love'(\widehat{PP}\{x_i\}), 0, \{i\} \rangle$

 $S' = \langle love_{\star}'(r,x_1), 0, \{1\} \rangle$

 $NP_2' = \langle \widehat{P}Ay[man'(\hat{y}) \& R\{y\} -- \rangle P\{y\}],0,0 \rangle$

Since qsS' is empty and iErpsS', we may use the B clause of T6 to get the translation of NP $_3$. What this rule does is replace R in hNP $_2$ ' by $\widehat{\mathbf{x}}_1$ hS':

Rules S6 and S8 of Appendix A also accept the NP in (17), where the resumptive pronoun is topicalized inside the relative clause:

NP2

COMP

S

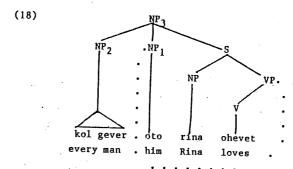
NP1

NP1

NP

VP.

kol gever Se oto rina ohevet every man that him Rina loves .


 $\begin{array}{lll} \text{NP}_1' &=& \langle \ ^{\gamma}p_1, \{\langle \widehat{PP}\{x_1\}, i\rangle\}, \{i\}\rangle \\ & & \text{(by clause B of the NP Storage Convention)} \\ \text{VP'} &=& \langle \text{love'}(\ ^{\gamma}p_1), \text{qsNP}_1', \{i\}\rangle \\ \text{S}_1' &=& \langle \text{love'}(\ ^{\gamma}p_1), \text{qsNP}_1', \{i\}\rangle \\ \end{array}$

Since hNP₁' is ' p_1 and the quantifier stores of NP₁' and S₁' have an element in common, the A clause of T8 can be used to get the translation of S. What this rule does is replace p_1 in hS₁' by the store:

$$S' = \langle [\widehat{p}_1 | \text{love}'(r, p_1)] (\widehat{PP}(x_1), 0, \{i\}) \rangle$$

 $\langle \text{love}'_1(r, x_1), 0, \{i\} \rangle$

This is the same as S' under (16). From here we proceed as in (16) and get the same translation for NP_3 .

Rule T7 accepts NP $_3$ in (18), where NP $_2$ has two sisters: NP $_1$ and S, rather than the familiar unique S' sister.

 $NP_2' = \langle \widehat{PAy[man'(y) \& R\{y\}} - \rangle P\{y\}\}, 0, 0 \rangle$

 $NP_{1}' = \langle p_{1}, \{\langle \widehat{PP}\{x_{1}\}, i \rangle\}, \{i\} \rangle$

 $VP' = \langle love'(p_1), qsNP_1', \{i\} \rangle$

 $S' = \langle love'(r,pi), qsNP_1', \{1\} \rangle$

Since hNP_1 is p_1 and the quantifier stores of NP_1 and S' have an element in common, which is moreover $\mathrm{PP}\{\mathbf{x}_1\}$, we may use T7 to get the translation of NP_3 . What this rule does is replace p_1 in hS' by the store, and then proceed like the B clause of T6, which is the rule for relative clauses with a resumptive pronoun.

$$NP_{3}' = \langle [\widehat{RPAy}[\max'(y) & R\{y\}] \\ --\rangle P\{y\}] (\widehat{x}_{1}[\widehat{p}_{1}] \text{love}'(r, p_{1})] (\widehat{PP}\{x_{1}\})), 0, 0 \rangle$$

= $\langle \widehat{P}Ay[man'(y) \& love'_{\star}(r,y)-->P\{y\}],0,0\rangle$

Notice that the way T6 and T7 are set up takes care of the fact that in (17), oto may be a resumptive pronoun (which in this case it is, since it happens to be the only pronoun in a relative clause with no gaps), whereas in (18) oto is obligatorily the resumptive pronoun (i.e. it would necessarily be the resumptive pronoun even if the clause had other pronouns). The difference can be seen in the following:

- (19) a. harofe Se otam Salaxti elav the doctor that them I sent to-him
 - b.* harofe otam Salaxti elav the doctor them I sent to-him

There are two pronouns in both (19a and b). Note that elav agrees with the head in number whereas otam does not. (19a) gets two readings by T6 that differ as to which one of the two pronouns is interpreted as a resumptive pronoun. The reading where otam is the resumptive pronoun gets ruled out for pragmatic reasons, and (19a) ends up having one reading where elav is the resumptive pronoun. (19b) on the other hand gets only one reading by T7 - that in which otam is the resumptive pronoun. This reading gets ruled out for pragmatic reasons, which results in (19b) being unacceptable.

Notice also that a structure accepted by S7 is not given a semantic interpretation unless XP is a pronoun. This rules out (20a), whereas (20b) is accepted by S6 and S8:

- (20) a. *haiS oto ve et axiv rina ohevet the man him and ACC his-brother Rina loves
 - b. hais Se oto ve et axiv rina ohevet
- (21) is an example with a resumptive pronoun in subject position: 5
- (21) kol gever Se dina xoSevet Se hu ohev et rina every man that Dina thinks that he loves ACC Rina

Notice that since NPs with PP heads are excluded on general grounds, we do not get PP gaps in relative clauses, only

⁴Treating person, gender and number agreement of resumptive pronouns to the head as a pragmatic issue was suggested to me by Charles Kirkpatrick.

⁵The following problem arises immediately:

^{(1) *} kol gever Se hu ohev et rina r every man that he loves ACC Rina

The generalization is that nominative resumptive pronouns may not occur in the highest S sister of COMP. The following solution has been suggested to me by Lauri Karttunen: We add a new pronoun store called "local resumptive pronoun store", in which we store the indices of the variables translating nominative pronouns. The indices for all the other pronouns are stored as before in the resumptive pronoun store. At the stage where we combine the interpretation of S' with the interpretation of its sister node, whatever it may be, we transfer the contents of the local resumptive pronoun store into the pronoun store. If that sister node happened to be the head NP, we would have already retrieved an index from the resumptive pronoun store, and this index could not be one for a nominative pronoun in the highest S.

P+resumptive pronouns:

(22) a. kol gever Se rina xoSevet alav every man that Rina thinks about-him

b. * .[NP [PP al kol gever] Se rina xoSevet ___].

Topicalized elements may, on the other hand, be PPs (by S8), so that both (23a and b) are acceptable:

- (23) a. kol gever, rina xoSevet alav every man Rina thinks about-him
 - al kol gever rina xoSevet about every man Rina thinks

Since dislocated PPs are necessarily link children (see the specification of dislocated constituents in Appendix A), the

(ii) ·[NP kol gever] Se rina ohevet ___.
every man that Rina loves .

The reason is that the case marking of the whole NP percolates to the $head\ NP$. For example:

(iii) kol gever Se rina ohevet ohev ota every man that Rina loves loves her

In (iii) kol gever is nominative since the NP kol gever Se rina ohevet is subject of the sentence. The rule of ACC marking would apply therefore only to NPs that are not directly dominated by NP.

I still have to explain why there is no preposition stranding in Hebrew, i.e. why (iv) is unacceptable where (22a) was acceptable:

(iv) *.[NP kol gever] Se rina xoSevet al _____.
every man that Rina thinks about .

The reason I think has to do with the fact that prepositions in Hebrew are viewed as case-markings on NPs, and therefore have to be adjacent to those NPs.

following is ungrammatical:

(24) * al kol gever rina xoSevet alav about every man Rina thinks about-him

Only dislocated NPs that are link children can be marked with the ACC marker, since only NP sisters of V get marked ACC. Since linking is not used in accounting for resumptive pronouns, it follows that (25a) is ungrammatical whereas (25b) is good.

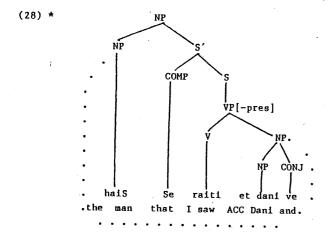
- (25) a. * et dani rina ohevet oto ACC Dani Rina loves him
 - b. [et dani] rina ohevet ___.

Finally, note that examples such as (26a) have nothing to do with topicalization, and are quite distinct from those like (23b). (26a) is an example of the Hebrew subject-verb inversion rule, that is optionally triggered by fronting an element of the verb's complement structure. This rule is not at all the same as topicalization, as it is not unbounded (cf. (26b)).

- (26) a. al kol gever xoSevet rina about every man thinks Rina
 - b. * al kol gever amar dani Se rina xoSevet ____about every man said dani that Rina thinks

Another difference is that Topicalization may involve a resumptive pronoun (cf. (23a)), whereas the subject-verb inversion rule does not involve a pronoun to replace the fronted element (which is as expected, since think is not subcategorized for two about complements):

(27) kol gever xoSevet rina alav every man thinks Rina about-him


In summary, Hebrew has a rule of Topicalization (S8), where we find NP or PP preceding S, and where either the "linking" strategy is used, or the resumptive pronoun strategy. Relativization on the other hand involves an NP preceding S', and again either strategy may be used (cf. S6). Additionally, there is the tripartite NP construction for relativization (cf. S7), where an NP is followed first by a resumptive pronoun and then by S.

⁶Definite NPs in object position are marked in Hebrew by the ACC marker <u>et</u>. This is not the case in (15), repeated here as (ii), the acceptable counterpart of (22b):

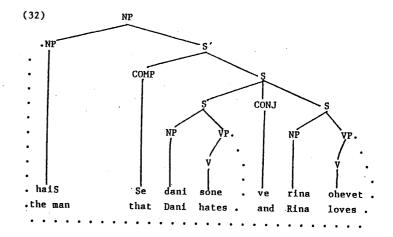
3. Differences betwee Resumptive Pronouns and Gaps

3.1. Syntactic differences

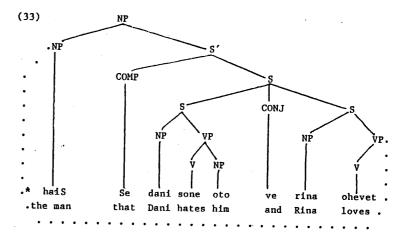
Our system still needs a constraint to block examples such as the following, similar to what the case is in English:

Assume the constraint is stated as follows:

(29) If X directly dominates [X CONJ X...CONJ X], then every link descendant of the root X is also a link descendant of each daughter X.


If we treat resumptive pronouns as phonological realizations of gaps, we get the following counter-example to (29):

(30) hais Se raiti et dani ve oto the man that I saw ACC Dani and him


whereas if resumptive pronouns are independent nodes, (29) holds with no problems. A similar example was given in (1), repeated here as (31). (31) is acceptable not only in Hebrew but also in Irish and in the Scandinavian languages.

(31) This is the woman that John said that she and Bill are having an affair.

Another example that conforms to (29) is brought out in (32):

If resumptive pronouns were realizations of gaps, the following should be just as grammatical as (32), which it is not. And indeed under my analysis, (29) explains its ungrammaticality:

whereas if <u>oto</u> is seen just as the phonological realization of another link that starts at the first VP and ends at the head, the ungrammaticality of (33) is unexplained.

So I have established a syntactic distinction between gaps and resumptive pronouns, and we now turn to semantic distinctions.

3.2. Semantic differences

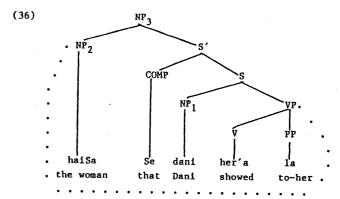
18

3.2.1. Relative clauses with both gaps and resumptive pronouns

I will now show that without any additional stipulation we get the right result when a relative clause contains both a gap and a pronoun. In this case the pronoun is never interpreted as a resumptive pronoun, rather it is the gap that gets bound by the head:7

Se dani her'a la (34) haiSa the woman that Dani showed to-her

'The woman, that Dani showed her, to her.


whereas in the case of two pronouns, either could be bound by the head:

Se dani her'a (35) ha '1Sa the woman that Dani showed to-her her

> 'The woman that Dani showed to her.' (same meaning as (34)) or 'The woman to whom Dani showed her.'

The representation for (34) is (36):

b.? natati oto lo

 $NP_1' = \langle PP\{d\}, 0, 0 \rangle$ $PP' = \langle \widehat{P}P\{x_4\}, 0, \{j\} \rangle$ $NP_2' = \langle p_i, \langle PEy[Az[(woman'(z))] \rangle$ $VP' = \langle show'(p_1, \widehat{PP}\{x_1\}), qsNP_2', \{j\} \rangle$ $s' = \langle show'(d, p_1, \hat{p}_1 \langle x_1 \rangle), qsNP_2', \{j\} \rangle$ $NP_{3}' = \langle \widehat{P}[\widehat{p}_{1} \operatorname{show}'(d, p_{1}, \widehat{PP}\{x_{j}\})] \langle \widehat{R} \operatorname{qsNP}_{2}'(P)), 0, \{j\} \rangle$ $= \langle \widehat{PE}| y[\operatorname{woman}'(y) \delta \operatorname{show}'_{*}(d, y, x_{j})$

Notice that \mathbf{x}_1 cannot be bound by NP' since when qsS' is not empty it is the variable whose index is stored in qsS' that gets bound, in this case p_i . x_i may be bound by a head further up the tree or by another dislocated element. Notice that I am for simplicity writing down only one possible translation of the pronoun <u>la</u>. The other one is simply $(\widehat{PP}\{x_1\},0,0)$, i.e. the meaning of a regular pronoun rather than that of a resumptive pronoun.

The representation for (35) is (37):

& $P{y}$, 0, { $j}$ >

⁷ Notice that pronominal PPs in Hebrew precede NPs (even pronominal NPs) in the VP. For example:

⁽iv) a. natati lo oto I gave to-him it

⁸The reader is reminded that I use relational notation, e.g. A(B,C) not only when these denote expressions of type t, but also when they denote expressions of type (e,t) (cf. T2). Therefore in show'(p_i , PP{ x_i }) below, p_i is the direct object and not the subject. Notice moreover that in the translations under (36), and everywhere else in the paper, I use qsX' ambiguously to refer to the quantifier store $\langle \alpha, i \rangle$ and also to its first coordinate α . It should be clear each time which one is intended.

NP S VP VP VP NP 1 haiSa Se dani her'a la ota the woman that Dani showed to-her her

 $\begin{array}{rcl} NP_{1}' & = & \langle \widehat{P}P\{x_{1}\}, 0, \{i\} \rangle \\ PP' & = & \langle \widehat{P}P\{x_{1}\}, 0, \{j\} \rangle \\ NP_{2}' & = & \langle \widehat{P}P\{d\}, 0, 0 \rangle \\ S' & = & \langle show'(d, x_{1}, x_{2}), 0, \{i, j\} \rangle \end{array}$

The semantics will give us the right ambiguity, since depending on which index is retrieved from rpsS', the meanings of NP₃ will be:

$$\begin{array}{l} <[\widehat{RPE}|y[woman'(y) \& R\{y\} \& P\{y\}]] \\ (\widehat{x}_{1}show_{2}(d,x_{1},x_{1})),0,\{j\}> \\ \\ r \\ <[\widehat{RPE}|y[woman'(y) \& R\{y\} \& P\{y\}]] \\ (\widehat{x}_{1}show_{2}(d,x_{1},x_{1})),0,\{i\}> \end{array}$$

and after lambda conversion:

$$\langle PE!y[woman'(y) \& show_{*}(d,y,x_{j}) \& P\{y\}],0,\{j\} \rangle$$
(same as for 36)

<PE!y[woman'(y) & show'(d,x1,y) & P{y}],0,{i}>

3.2.2. Coindexing of gaps and resumptive pronouns

Consider the following examples:

(38) a. hais Se imo ohevet the man that his mother loves

b. hais Se imo ohevet oto the man that his mother loves him

(38b) uses a resumptive pronoun where (38a) has a gap. Even

though this is the only difference between them, the two NPs do not have the same readings. In (39) and (40) we present all the coindexing possibilities for (38a) and (38b) respectively:

- (39) the man, that his mother loves ___1
- (40) a. the man $_1$ that his $_2$ mother loves him $_1$
 - b. the man, that his, mother loves him,
 - c. the man, that his, mother loves him,

Notice that (38a) has only one reading, it does not have a reading where the pronoun and the gap are coindexed. The gap is of course always coindexed with the head, therefore the head and the pronoun are not coindexed. In other words, (38a) does not have a reading where the pronoun is a resumptive pronoun for the man. (38b), on the other hand, has a reading where the two pronouns are coindexed, i.e. (40b). When they are not, either can be the one coindexed with the head, in other words - either can be the resumptive pronoun. This is shown in (40a and c).

It is interesting now to see that our system gives exactly the right readings for (38a and b). We will see that (38a) gets the meaning in (41), that corresponds to (39):

whereas (38b) gets the meanings in (42a-c) corresponding to the readings in (40a-c):

⁹I user the term "coindexed" (rather that "coreferential") in the sense emphasized by Bach and Partee (1980):"...coindexing a pronoun with some other expression is a shorthand of saying that the pronoun in question is being interpreted as a bound-variable..."(p. 7).

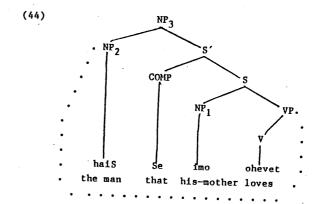
¹⁰ I do not claim this is the best possible translation for his mother, but it will do for the purposes of this paper. Also I will from now on use a (somewhat misleading) notation, according to which the translation of the woman, for example, looks like (i), but means (ii):

⁽¹⁾ PE!y[woman'(y) & R{y} & P{y}]

⁽ii) $PEy[Az[(woman'(z) & R{z})<-->z=y] & P{y}]$

The crucial point is the following: the variable \underline{z} in (41), that stands for the pronoun \underline{his} in (39), is outside the scope of the head NP, which is the quantifier that binds the variable \underline{x} (that stands for the gap in (39)). Therefore even if while translating (38a) we assign the pronoun and the gaps translations with the same index for the respective variables, eventualy one will be bound and the other not. Notice that (41) can really be rewritten as:

(43) PEly[mother'(y) & possess'(x,y) & Elx[man'(x) & love'(y,x) & P[x]]


As pointed out to me by Charles Kirkpatrick, I still have to show why we do not get accidental binding in (38a). The answer I believe lies in the domain of pragmatics, as argued by Reinhart (1981) for a similar question. Since the language has the means to indicate that it intends the head NP to bind the pronoun (i.e. by using another pronoun in place of the gap), it would be infelicitous of the speaker to use (38a) when he intends to communicate (40b).

In (42) the situation is different. \underline{x} stands for the resumptive pronoun (cf. the difference between (42a) and (42c)). But if the other pronoun is translated using the same variable as in the translation of the resumptive pronoun, resulting for example in \underline{x} in (42b) where there is \underline{z} in (42a), this occurrence of the variable will be bound by the quantifier that binds the other occurrences of \underline{x} . Therefore we do get in (38b) a reading where the

two pronouns are coindexed. 11

We still have to show how our system gives the right meanings. I will only show how to get the translations of (38a and b) where we do choose the variables with the same index twice in the translations, since this is the interesting case.

Under (44) I show the relevant translation of (38a).

¹¹ The general question of where it is permissible to use the same variable in the translation of two pronouns is beyond the scope of this paper. See Keenan (1974), Reinhart (1979, 1981) or Bach and Partee (1980) for different approaches to the question of anaphora. I will assume that we use the same variable for both pronouns in order to get the readings in ((v)a and b).

⁽v)a. imo ohevet oto his mother loves him

b. imo ohevet et dani his₁ mother loves ACC Dani

```
NP_1' = \langle \overline{PE}!y[mother'(y) & possess'_{\star}(x,y) & P\{y\}],0,0 \rangle
        = \langle p_1, \{\langle \widehat{PE}|x[man'(x) \in R\{x\} \in P\{x\}], i \rangle\}, 0 \rangle
```

= $(hNP_1'(^1ove'(p_1)), qsNP_2', \{i\})$

= $\langle Ely[mother'(y) & possess'_{\star}(x,y) & love'(y,pi)],$ qsNP,',0>

 $NP_3' = \langle \widehat{P}[\widehat{p}_1 \widehat{h}S'](\widehat{R}qsNP_2'(P)),0,0 \rangle$

= $\langle \widehat{P}[\widehat{p_i}][E!y[mother'(y) \& possess'_{\star}(x,y)]$ \bar{a} love'(y, p_i)](\hat{R} qsNP₂'(P)),0,0>

= <PEly[mother'(y) & possess*(x,y)

& love'(y, RE!x[man'(x) & R{x} & P{x}]],0,0>

= <PEly[mother'(y) & possess'(x,y) & Elx[man'(x)

& love*(y,x) & P{x}]],0,0>

hNP₃' is indeed the reading in (43). (Notice that nothing would have changed had we stored anything in the resumptive pronoun stores.)

Under (45) I give the relevant translation of (38b).

(45)COMP

 $= \langle \overrightarrow{P}P\{x_i\}, 0, \{i\} \rangle$

hais

the man

= $\langle PE!y[mother'(y) \& possess'_{\star}(x_1,y) \& P\{y\}],0,0 \rangle$

that his-mother loves

oto

him

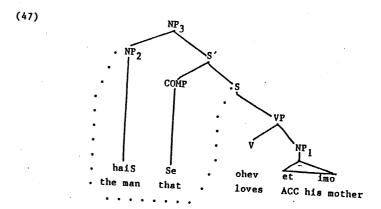
= $\langle E!y[mother'(y) \& possess'_{\star}(x_{1},y)$

& $love_{*}(y,x_{*})],\{i\}>$

 $= \langle PE!x[man'(x) & R\{x\} & P\{x\}\},0,0 \rangle$

 $= \langle [\widehat{R}hNP_2'](\widehat{x}_1hS'),0,0\rangle$

= PE!x[man'(x) & E!y[mother'(y) & possess'(x,y)

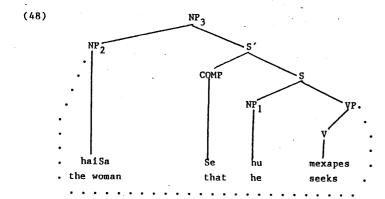

& love'(y,x)] & $P\{x\}$],0,0>

hNPA' is indeed the translation in (42b).

Notice that we could not have explained (38a) by a general prohibition on coindexing of gaps and pronouns, since the following is acceptable:

(46) hais ohev the man that 1 loves ACC his -mother

My system gets this reading:


 $NP_1' = \langle \widehat{PE}|y[mother'(y)^possess'_{\star}(x,y) & P\{y\}],0,0 \rangle$ = < p1, {<PE|x[man'(x) & R{x} & P{x}], i>},0> = <p_{1}(^1ove'(^hNP₁')),qsNP₂',0> $NP_3' = \langle P[\widehat{p}_1 p_1 \{^1 \text{love'}(\hat{h}NP_1')\}\} (\hat{R}qeNP_2'(P)), 0, 0 \rangle$ = $\langle \widehat{P}[\widehat{RE}|x[man'(x) & R\{x\} & P\{x\}]](\widehat{nne}(\widehat{nnp}_1'))$,

<Pelx[man'(x) & love'(x, hNP1') & P{x}],0,0> = <Peix[man'(x) & Ely[mother'(y) & possess*(x,y) & love'(x,y)],0,0>

hNP3' is the reading in 46.

3.2.3. Referentiality of the head NP of the relative clause

I will now show that the ways in which the binding of gaps differs from the binding of resumptive pronouns gives us the right Consider the following NP:

 $NP_1' = \langle PP\{x\}, 0, 0 \rangle$

 $NP_{2}' = \langle p_{1}, \{ \langle PEly[woman'(y) & R\{y\} & P\{y\}\}, i \rangle \}, 0 \rangle$

= <seek'(p₁),qsNP₂',0>

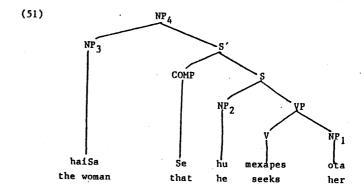
= $\langle seek'(x,p_1), qsNP_2', 0 \rangle$

 $NP_3' = \langle \widehat{P}[\widehat{p}_1 \operatorname{seek}'(x, p_1)](\widehat{R}q \operatorname{sNP}_2'(P)), 0, 0 \rangle$

= $\langle \widehat{P}seek(x,\widehat{R}E!y[woman'(y)] \& R\{y\} \& P\{y\}]),0,0\rangle$

And indeed the following sentence has a de dicto reading:

(49) dani yimca et haiSa Se hu mexapes Dani will-find ACC the woman that he seeks


which is the following (where dani' binds x):12

The interesting point is that the sentence parallel to (49) but where the relative clause is formed with a resumptive pronoun does not have a de dicto reading:

(50) dani yimca Se hu mexapes Dani will-find ACC the woman that he seeks

The only meaning of this sentence can be paraphrased as follows: 'There is woman that Dani is seeking and he will find this woman.'

And indeed under my account, the NP that contains the relative clause has the following structure:

 $NP_1' = \langle \widehat{P}P\{x_1\}, 0, \{1\} \rangle$

 $VP^{\hat{i}} = \langle \operatorname{seek}^{\hat{i}}(\widehat{P}P\{x_1\}), 0, \{i\} \rangle$

 $NP_{2}' = \langle \widehat{P}P\{x_{4}\}, 0, 0 \rangle$

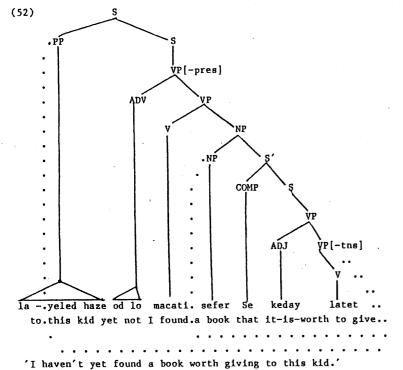
= $\langle \operatorname{seek}^{\dagger}(x_1, \widehat{PP}\{x_1\}), 0, \{i\} \rangle$

 $NP_3' = \langle PE!y[woman'(y) & R{y} & P{y}], 0, 0 \rangle$

 $NP_{4}' = \langle [\widehat{R}hNP_{3}'](\widehat{x}_{1}seek'(x_{1},\widehat{P}P\{x_{1}\})),0,0\rangle \\ = \langle \widehat{P}Ely[woman'(y) \& seek'(x_{1},\widehat{P}P\{y\}) \& P\{y\}],0,0\rangle$

Therefore in the case where x gets bound by dani', the only meaning for (50) is the following:

Ely[woman'(y) & seek'(d,PP{y}) & willfind'(d,y)]


i.e. the only reading we get for (50) is de re, which is the right result.

 $^{^{12}\}mathrm{A}$ treatment for tense is outside the scope of this paper. I use will-find' here rather than find' so that the reading does not sound contradictory.

3.2.4. Island Constraints

Next we turn to the differences between relative clauses with gaps and resumptive pronouns with respect to gaps bound from outside the clause.

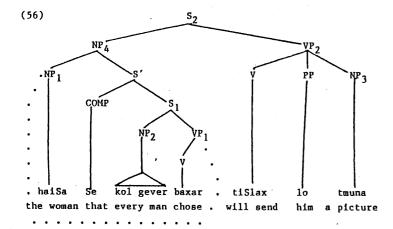
Consider the following grammatical sentence of Hebrew:

Surprisingly, the corresponding sentence with a resumptive

pronoun in the relative clause, i.e. with only one gap instead of the two in (52), is ungrammatical: (54) haiSa₁ Se kol gever₂ baxar ____1 tiSlax lo₂
the woman₁ that every man₂ chose ____1 will-send him₂
tmuna
a picture

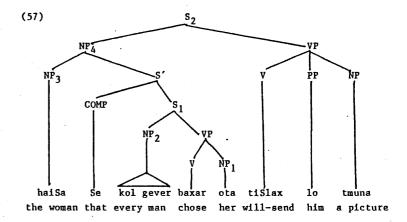
VP[-pres]

ADV


VP | NP | S | VP[-tns]

*la-yeled haze od lo macati sefer Se keday latet oto. to this kid yet not I found a book that it-is-worth to-give it.

Yet the constraint that will star (53) cannot be syntactic, since the same phenomenon repeats itself when instead of a constituent dislocated from within the relative clause we have an NP that syntactically is inside the relative clause, but semantically is "quantified" into that clause. (54) has a reading where the pronoun 10 is bound by kol gever, whereas (55) does not have such a reading:


(55) * haiSa $_1$ Se kol gever $_2$ baxar ota $_1$ tiSlax $1o_2$ the woman $_1$ that every man $_2$ chose her $_1$ will-send him $_2$ tmuna a picture

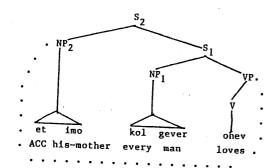
The constraint that accounts for the unacceptability of both (53) and (55) will therefore be semantic. In my system, (53) does not get any readings, and (55) does not get a reading where kol gever binds lo. To exemplify how this works, we now show how we get the reading in (54), and how we don't get the reading in (55).


```
NP_1' = \langle p_1, \{\langle PEly[woman'(y) & R\{y\} & P\{y\}\}, i \rangle \}, 0 \rangle
NP_{2}' = \langle p_{1}, \{\langle \widehat{P}Ax[man'(x)--\rangle P\{x\}], j \rangle \}, 0 \rangle
VP_1' = \langle choose'(p_1), qsNP_1', 0 \rangle
S_1' = \langle p_1 \{ \text{`choose'}(p_1) \}, \text{qsNP}_1' \text{UqsNP}_2', 0 \rangle
NP_4' = \langle \overline{P}[\widehat{p}_1 hS_1'](^RqsNP_1'(P)), qsNP_2', 0 \rangle
        =\langle P[\hat{p}_1 p_4 \{ \hat{R}[PE!y[woman'(y) & R\{y\}] \} \}
           & P{y}]](P)),qsNP<sub>2</sub>',0>
        =\langle Pp_{1}(\hat{R}E|y[woman'(y) & R{y} & P{y}]),
           qsNP,',0>
NP_3' = \langle PEz[picture'(z) \& P\{z\}], 0, 0 \rangle
PP' = \langle PP\{x_4\}, 0, 0 \rangle
VP_{2}' = \langle send'(^hNP_{3}', ^PP\{x_{1}\}), 0, 0 \rangle
S_2' = \langle qsNP_2'(\widehat{x}_1|\widehat{p}_1hNP_4'(\widehat{send'}(\widehat{hNP}_3',\widehat{PP}\{x_4\})) \rangle
              (^PP\{x_4\})),0,0>
        = \langle qsNP_{2}'(\widehat{x}_{1}E|y[woman'(y) & choose'_{*}(x_{1},y)
              & send'(y, hNP<sub>3</sub>', PP\{x_1\}),0,0>
       = \langle qsNP_2'(\hat{x}_1E!y[woman'(y)] \& choose_*(x_1,y)
              & Ez[picture'(z) & send'<sub>*</sub>(y,z,x<sub>i</sub>)]]),0,0>
        = \langle Ax[man'(x)--\rangle E!y[woman'(y) & choose'_{\star}(x,y)
              & Ez[picture'(z) \& send'_{\star}(y,z,x)]]],0,0
```

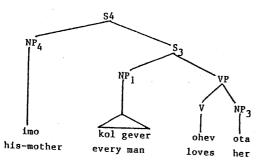
This indeed is the reading where kol gever has scope over the whole sentence. To show that (55) does not have this reading, we give its structure in (57):

 $NP_1' = \langle PP\{x_1\}, 0, \{1\} \rangle$

 $NP_3' = \langle \widehat{PEly[woman'(y) \& R\{y\} \& P\{y\}], 0, 0 \rangle}$


To combine NP_3 with S_1 to get NP_4 we cannot apply A in the definition of T6 since $qsNP_3$ is empty, and we cannot apply B since qsS_1 ' is not empty. Therefore S_2 in (57) does not get a meaning where kol gever has scope over the whole sentence.

The same difference shows up between topicalization with and without resumptive pronoun (cf. rule S7 in Appendix A):


(58) a. et ko1 ohev ACC his mother, every loves b. * imo. his, mother, every mani loves her

The structures for (58a and b) are shown in (59a and b) respectively:

(59) a.

ь.

 $\begin{array}{lll} \text{NP}_1' &=& \langle \ \ p_1, \{ \langle \widehat{P}Ax[man'(x)--\rangle P\{x\}], i \rangle \}, 0 \rangle \\ \text{NP}_4' &=& \langle \widehat{P}Ely[mother'(y) & possess'_{\kappa}(x_1, y)) \\ & & & P\{y\}\}, 0, 0 \rangle & (\text{cf. fn9}) \\ \text{NP}_3' &=& \langle \widehat{P}P\{x_j\}, 0, \{j\} \rangle \\ \text{S}_3' &=& \langle p_1 \{ 1 \text{ove'}(p_1) \}, q \text{sNP}_1', \{j \rangle \} \rangle \end{array}$

Notice that we should be allowed to use the same variable x_1 both in the translation of NP₁ and NP₂ (and NP₄), since we would have to do the same to get the following reading of (60):

(60) kol gever ohev et imo every man loves ACC his l-mother

Any element in qsS_1 can be retrieved at this point. If the

first one is, <u>kol gever</u> won't have wide scope over <u>imo</u>. If the second one is, we won't be able to combine NP_2 with S_1 , because we will be missing the right element in store. So to get the reading we want, no element is retrieved from store at this point, and the translation for S_2 is:

$$S_2' = \langle [\hat{p}_{\dagger} h S_1'] (qsNP_2'), qsNP_1', 0 \rangle$$

After retrieving qsNP1', I get the reading we wanted for (58a):

 $hS_2' = Ax[man'(x) \longrightarrow Ely[mother'(y) & possess'(x,y) & love'(x,y)]$

 S_3 on the other hand cannot be combined to the dislocated element NP_4 . Clause A of T8 does not apply since qsS_3 ? $qsNP_4$ =0. Clause B of T8 does not apply since qsS_3 !0. So we cannot get a reading for S_4 where kol gever has wide scope over imo. The only meaning we get for S_4 is when we store nothing for NP_1 , and that reading would be:

Ely[mother'(y) & possess'(x,y) & $Ax[man'(x) \longrightarrow love'(x,y)]$

(i.e. where imo is outside of the scope of kol gever.)

To summarize section 3.2, I have shown several differences in the meanings of relative clause with and without resumptive pronouns. These differences have to do with the fact that the antecedent of a resumptive pronoun always has wider scope than any other quantifier in the same clause with the pronoun and than the antecedent of any gap in the same clause with the pronoun. The same differences appeared in the meanings of sentences topicalized with and without resumptive pronouns. My system captures these differences by ensuring that pronouns are not treated as resumptive as long as there still is unretrieved quantifier storage, i.e. as long as there still are gaps in the clause that have not been bound, or NP meanings that have not been quantified in. Treatments that conflate gaps and resumptive pronouns would be hard pressed to account for these differences.

4. The distribution of resumptive pronouns

I now turn to show how my system captures the patterns of gaps and resumptive pronouns distribution in multiple extractions noted by Engdahl(1980) and Maling and Zaenen (1980). The same patterns basically hold for Hebrew, so I will start with Hebrew examples:

- (61) a. hamaamarim haele $_1$, dani xoSev Se et haorex haxadaS $_2$ these articles $_1$ Dani thinks that ACC the new editor $_2$ efSar leSaxnea ____2 levater alehem $_1$ it's possible to convince ____2 to give up on them $_1$
- (62) a. haorex haxadaS₁, dani xoSev Se al hamaamarim haele₂
 the new editor₁ Dani thinks that on these articles₂
 efSar leSaxnea oto₁ levater ____2
 it's possible to convince him₁ to give up ____2
 - b. *et haorex haxadaS₁ dani xoSev Se hamaamarim haele₂

 ACC the new editor₁ Dani thinks that these articles₂

 efSar leSaxnea ____1 levater alehem₂

 it's possible to convince ____1 to give up on them₂

Using Fodor's (1978) terminology of fillers (F) and gaps (G) to refer to "preposed" constituents and "extraction" sites, the distributions of Fs, Gs and Ps (pronouns) in (61) and (62) are summarized in (63) and (64) respectively:

(63) a.
$$F_1$$
 F_2 G_2 P
b. * F_1 F_2 P G_1

(64) a.
$$F_1$$
 F_2 P G_2 b. $*F_1$ F_2 G_1 P

Notice that this pattern is exactly what our system here predicts: F_2 cannot bind P as long as there is an unbound gap G_1 , i.e. as long as there is still an unretrieved quantifier-store. Therefore a sentence which has a distribution of gaps and pronouns as in (63b) or (64b) will only get an interpretation where P is a free pronoun. This would leave us with one filler too many, which

explains the unacceptability of such a sentence. Notice that the explanation does not rely on left-right precedence, and indeed any order of G_1 and P results in a starred configuration. (63a) and (64a) are acceptable configurations, since G_2 gets bound by F_2 before P has to be bound by F_1 . By the time P has to get bound the quantifier-store is empty and F_1 can bind P. Again in this case any order of G_2 and P is acceptable.

Engdahl (1979) has the following examples from Swedish:

- - b. *Haar ar flickorna₁ som jag inte minns vilka pojkar₂ lararen bad dem₂ dansa med _____1.

 'Here are the girls that I don't remember which boys the teacher asked them to dance with.'(Engdahl's (13))

(65a and b) exemplify the distribution in (63a) and (64b) respectively. Neither Engdahl nor Maling and Zaenen have examples for (64b) or (63a). The only things mentioned about these cases are that in Swedish "the resumptive pronoun always precedes the gap" (Maling and Zaenen (1980) p.51) and "if the bindings are nested, a pronoun may not occur" (Engdahl (1979) p.80). I conclude from these remarks that in Swedish not only (64b) is starred, but so is (63a). The fact that (63a) is starred in Swedish requires an additional stipulation in my account, (which shouldn't be surprising since this a language specific phenomenon), and so it does in Engdahl's account.

Engdahl (1979) proposes a general parsing principle to account for (63b) and (64a-b). She restates Fodor's (1978) Nested Dependency Constraint (NDC) as a general parsing strategy: "Associate the most recent filler with the next gap."(Engdahl's (22)). When the parser encounters a structure F_1 - F_2 -P-G..., the parsing strategy results in automatically assigning it F_1 - F_2 -P-G2, i.e. the parser does not have to make a decision about which filler to associate with the gap.

"...the NDC reduces the momentary processing load by only allowing the parser to make one assignment. Notice that the NDC enables the parser to resolve a pending filler-gap assignment locally and immediately. The closest filler is always associated with the next encountered gap. Most likely this 'local decision

principle' will be highly valued by a parser engaged in real time processing." (Engdahl (1979) p.84)

First notice that nothing about the NDC accounts for the fact that (63a) is starred in Swedish, since it is true of (63a) that the closest filler is associated with the gap. Secondly, as Engdahl herself notices, it is so far not at all clear whether this system is able to get all the semantic bindings right with only local decisions:

"When the parser reaches a pronoun in a structure $F_1-F_2-P\dots$, it ... has the option either to assume that it is a freely referring pronoun, or that it is a resumptive pronoun, controlled by a preceding filler. At this stage in the processing, either choice may cause considerable reanalysis when more of the sentence is available." (Engdahl (1979) p.85)

Thirdly, the NDC doesn't always make the right predictions in cases of multiple gaps. Engdahl (1980) has the following examples from Norwegian:

- (66) a. Det var Eva₁ laereren spurte hvilken₂ gutt vi trodde
 ______2 var spint pa _____1
 - Det var Eva₁ laereren spurte hvilken₂ gutt vi trodde
 ______1 var spint pa ______2

"It was Eva that the teacher asked which boy we thought ___ was mad at ___." (Engdahl's (83))

The pattern of fillers-gaps exemplified in (66a and b) are shown in (67a and b) respectively:

(67) a.
$$F_1$$
 F_2 G_2 G_1
b. F_1 F_2 G_1 G_2

According to the NDC (66b) and (67b) should be starred, since it involves crossing dependencies, i.e. binding of the second gap rather than the first to the last filler.

Other acceptable crossing dependencies occur in Icelandic:

(68) Pessum krakka₁ herua geturdu aldrei imyndad per hvada
this boy₁ here you can never guess what
gjof₂ eg gaf ____1 __2
gift₂ I gave ___1 __2
(Maling and Zaenen (1980) (13)c)

There are probably additional factors that influence the interpretation of crossing dependencies. Engdahl reports that nested readings, e.g. (66a) are strongly preferred in most contexts. But dependence upon context could hardly be accounted for by a principle about internal parsing of sentences.

Consider the following Hebrew examples from Reinhart (1980):

- (69) a. 'al ha-nose ha-ze₁ ulay tuxal lomar li eize
 on this topic₁ perhaps you could tell me which
 sfarim₂ ata xoSev Se keday li likro ___2 ___l
 books₂ you think that it's worth to-me to-read ___2 ___l
 (Reinhart's 14a)
 - b. hine sifri ha-riSon Se oto ani yodea 'al eize here is my first book that it I know on which nose at a xoSev Se katavti —1 —2 topic you think that I wrote —1 —2 (Reinhart's 14b)

The sentences in (69a and b) are both equally acceptable to me, but Reinhart reports that "this is the area where I found most disagreement in judgment among the speakers I checked with."(p. 14) The disagreement though is about the status of what Reinhart calls "extraction across two S' nodes", not about any difference in acceptability between (69a and b). And indeed examples where there is "extraction across one S' node only" are cited as acceptable by Reinhart, even when they involve crossing dependencies:

38

(70) et ha-xavila ha-zot₁ hayiti roce la-daat im mi₂

ACC this package₁ I would like to know with whom₂

dan Salax ____i le-rosa ___2

Dan sent ____i to Rosa ____2

Since word order in Hebrew VPs is sometimes relaxed (cf. note 7), we should look at examples where the two gaps are not daughters of the same VP. Reinhart gives the examples in (71), and finds (71b), the one with crossing dependencies, unacceptable. For me both are acceptable:

(71) a. et ha-sefer ha-ze₁, lo taamin et mi₂

ACC this book₁ you would'nt believe ACC who₂

Sixnati ____2 lisxov ____1 me-ha-sifriya

I convinced _____2 to steal ____1 from the library

b. et ha-'iS ha-ze₁, 16 taamin eyze sefer₂

ACC this man₁ you wouldn't believe what book₂

Sixnati ____1 lisxov ____2 me-ha-sifriya

I convinced ____1 to steal ____2 from the library

(Reinhart's (44) a and b; she stars b)

Where the two dislocated XPs do not share the same preposition or case marking, I do find the examples with crossing dependencies less acceptable:

(72) a. 'al ha-maamarim ha-ele dani xoSev Se 'et ha-'orex on these articles Dani thinks that ACC the new ha-xadaS2 'efSar le-Saxnea 2 le-vater 1 editor2 it's possible to convince 2 to give up 1

b.?'et ha-'orex ha-xadaS₁, dani xoSev Se 'al ha-maamarim

ACC the new editor₁ Dani thinks that on these
ha-'ele₂ 'efSar le-Saxnea ____1 le-vater ____2
articles₂ it's possible to convince ____1 to give up ____2

The only thing we can conclude from this discussion of crossing

dependencies is that their acceptability depends upon the language, the context, the speaker, and other structural properties of the sentences themselves. In any case they seem to be a different phenomenon from the distribution of resumptive pronouns, for which this paper accounts.

We have seen problems that Engdahl's processing account for the distribution of resumptive pronouns runs into. Maling and Zaenen advocate a similar processing account, though they do not emphasize the NDC as an absolute principle. Rather they suggest that whereas a gap increases "processing load" (cf. Wanner and Maratsos (1978)), a resumptive pronoun does not. In other words, gaps interrupt the processing of a clause, since they have to be immediately paired with an antecedent on hold, whereas pronouns (resumptive or others) are not. In this respect, a resumptive pronoun is "preferable", specially in constructions involving crossing dependencies. This account as it stands does not make specific predictions as to what distributions of gaps and resumptive pronouns are acceptable. It also leaves open, just as Engdahl's did, the question of how resumptive pronouns are assigned to their antecedents.

Maling and Zaenen also propose an alternative syntactic solution. Their framework is basically that of Gazdar's plus allowing for multiply slashed categories. They propose the following metarule:

(73) A/B/C ---> A/C/B,, (Maling and Zaenen's (80))

where X/X,, is a resumptive pronoun.

We have already seen one problem in Maling and Zaenen's syntactic account, when we saw that it excluded crossing dependencies with gaps only (cf. (13)).

We will now test each of the three falsifiable accounts at hand: Engdahl's processing account, Maling and Zaenen's syntactic account, and my semantic account, for their predictions to the case of sentences with three fillers. We first look for a case where each account makes a different prediction. Consider the following distribution:

What are the permissible values for X in (74)?

The processing account predicts that the only permissible distribution of gaps and pronouns in (74) is:

(75)
$$F_1 F_2 F_3 P_2 G_3 P_1$$

since if we allowed G_2 , it would get bound to F_3 , and if allowed G_1 to follow P_2 - G_3 , it would get bound to F_2 .

The syntactic account predicts that the only permissible distribution of gaps and pronouns is the following:

(76)
$$F_1 F_2 F_3 P_2 G_3 G_1$$

since under this account we get a resumptive pronoun if and only if it replaces the first gap in a crossing dependency.

The semantic account that I have presented in this paper allows for the following distribution:

since by the time P_1 has to be bound by F_1 , the quantifier-store will be empty, G_2 and G_3 having already been bound. Notice that (77) is not the only distribution I predict; (75) would be acceptable as well. But in order to show the superiority of my account, it is enough to find an example that exhibits the distribution in (77), and here it is:

(78) ze hais Se od lo xatamta al-hamixtavim 2 this-is the man 1 that not yet you signed the letters 2 Se etmol hexlatnu le-mi 3 anaxnu omdim that yesterday we decided to whom 3 we are going lisloax ___2 ___3 ito 1 to send ___2 ___3 with-him 1

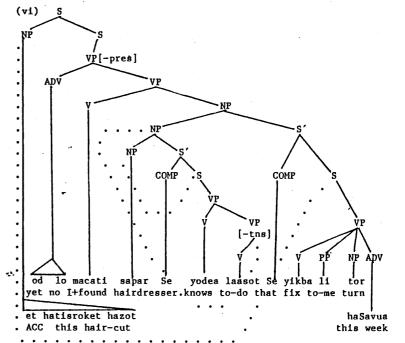
(I have not yet been able to check whether this example is grammatical in Norwegian.)

5. Conclusion

This paper has shown that a treatment of the syntax and semantics of resumptive pronouns as distinct from the syntax and semantics of gaps has many advantages over non-distinct treatments. Syntactically, resumptive pronouns do not behave as

gaps where the "Coordinate Structure Constraint" is concerned. Semantically, the antecedent of a resumptive pronoun has widest scope in the clause that contains the resumptive pronoun, whereas the antecedent of a gap does not. Another thing that the treatment in this paper accounts for is the distribution of resumptive pronouns in cases of multiple extractions.

٧,١.


APPENDIX A

[S NP VP[+pres]] [S (NP) VP[-pres]] [$_{\rm VP}$ V (XP $_{\rm 1}$... XP $_{\rm n}$)] where XP $_{\rm 1}$ is NP or PP and XP $_{\rm 1}$ =PP for 1<i<=n S2 [vp v s'] [VP V VP[-tns]] [s' COMP S] 54 [PP P NP] **S**5 [NP NP S'] [NP NP XP S] **S7** (where XP is NP or PP) [xr s] 58

Definition of "linked trees": (informal version)

A "linked tree" is a tree with zero or more edges of a new kind (called "links") added to it so that every node which is a link child, i.e. is at the bottom of a link, c-commands (with respect to the tree structure) its link parent(s). (from Peters (1981))

¹Peters actually has an additional condition: "Every link child dominates (with respect to the tree structure) the link child(ren) of any link parent it dominates." The motivation for this condition is not clear to me, and at least for Hebrew it seems to be wrong, since the following is grammatical:

^{&#}x27;I have not yet found a hair-dresser who can do this hair-cut who will give me an appointment for this week.'

Specification of "dislocated" constituents for Hebrew:

- A. An XP left sister of S or S' is a "dislocated" constituent. A dislocated NP may be, and a dislocated PP necessarily is, a link child whose parent(s) are dominated (with respect to the tree structure) by the S or S' node to its right.
- B. Only dislocated constituents may be link children.

APPENDIX B

Translation Convention:

Let X be a syntactic category.

- A. A "translation" of X is a triplet X' = <hX',qsX',rpsX'>,
 where:
 - i. hX' ("head" of X') is the familiar Montague translation of X.
 - ii. qsX' ("quantifier store" of X') is a set of pairs (a,i) where a is of type (<s,<e,t>>,t> (i.e. the type of familiar translations of NPs) and i is a natural number.
 - iii. rpsX' ("resumptive-pronoun store" of X') is a set of natural numbers.
- B. <hX',0,0> is a translation of X. Moreover, the only meanings of S are mappings of <hS',0,0>.

NP Storage Convention:

- A. If NP' is a translation of NP, then so is <'p₁,qsNP' U {<hNP',i>},rpsNP'>.
- B. Moreover, if $\langle \widehat{PP}\{x_1\},0,0\rangle$ is a translation of NP, then so are $\langle \widehat{PP}\{x_1\},0,\{1\}\rangle$ and $\langle \widehat{PP}\{x_1\},1\rangle,\{1\}\rangle$.

Store Retrieval Convention:

Let $\langle hS', qsS', rpsS' \rangle$ be a translation of S. If $\langle \alpha, i \rangle EqsS'$ then $\langle \alpha(\widehat{x}_1[\widehat{p}_1 hS'](\widehat{PP}\{x_1\}))$, $qsS'-\{\langle \alpha, i \rangle\}, rpsS' \rangle$ is also a translation of S.

Translation rules:

- T1 a. <hNP'(^hVP'),qsNP'UqsVP',rpsNP'UrpsVP'>
 - b. <~PP{x1}(^hVP'),qsVP',rpsVP'>
- T2 <hV'(^hXP₁', ..., ^hXPn'), U qsXPi', U rpsXPi'>
- T3 a. <hV'(^hS\'),qsS\',rpsS\'>
 - b. <hV'(^hVP')),qsVP',rpsVP'>
- T4 S'
- T5 NP

Let XP denote the immediate left sister of S or S' in S6, S7 and S8, and NP - the leftmost constituent in S7.

- A. If $hXP' = p_1$ and $\langle \alpha, i \rangle EqsXP' \cap qsS'$, then $T6 \langle \widehat{P}[\widehat{p}_1 hS'](\widehat{R}\alpha(P)), qsS' \{\langle \alpha, i \rangle\}, rpsS' \rangle$ $T8 \langle [\widehat{p}_1 hS'](\widehat{\alpha}), qsS' - \{\langle \alpha, i \rangle\}, rpsS' \rangle$
- and if moreover $\alpha = PP\{x_1\}$, then $T7 < [RhNP'](\widehat{x}_1[\widehat{p}_1hS'](\widehat{\alpha})), qsNP'UqsS'-\{\langle \alpha, 1 \rangle\},$ $rpsNP' \ U \ rpsS'-\{1\}>$
- B. If hXP'\neq 'p_1, qsS'=0 and i rpsS' then
 T6 < (RhXP')(^\hat{x}_1\hS'),qsXP',rpsXP' U rpsS'-{i}>
 T8 < hXP'(^\hat{x}_1\hS'),qsXP',rpsXP'UrpsS'-{i}>
- C. Otherwise T6, T7, and T8 are not defined. (R in T6 and T7 is the variable introduced in Bach and Cooper (1978).)

REFERENCES

- Bach, E. and R. Cooper (1978) The NP-S Analysis of Relative Clauses and Compositional Semantics. Linguistics and Philosophy 2(1).
- Bach, E. and B. Partee (1980) Anaphora and Semantic Structure. Unpublished ms. (University of Massachussetts, Amherst)
- Borer, H. (1979) Restrictive Relative Clauses in Modern Hebrew. Unpublished ms. (MIT)
- Cooper, R. (1975) Montague's Semantic Theory and Transformational Syntax. University of Massachussetts Ph.D. Dissertation.
- Engdahl, E. (1979) The Nested Dependency Constraint as a Parsing Principle. In Papers Presented to Emmon Bach by his Students. Ed. by E. Engdahl and M.J. Stein. Amherst: University of Massachussetts.
- Engdahl, E. (1980) The Syntax and Semantics of Questions in Swedish. University of Massachussetts Ph.D. Dissertation.
- Fodor, J. (1978) Parsing Strategies and Constraints on Transformations. Linguistic Inquiry 9(3):424-474.
- Gazdar, G. (1980) Phrase Structure Grammar. In On the Nature of Syntactic Representation. Ed. by G.K. Pullum and P. Jacobson. (forthcoming)
- Gazdar, G. (1980) Phrase Structure Grammar. In On the Nature of Syntactic Representation. Ed. by G.K. Pullum and P. Jacobson. forthcoming.
- Gazdar, G. (1981) Unbounded Dependencies and Coordinate Structure. Linguistic Inquiry 12.
- Joshi, A.K. and L.S. Levy (1977) Constraints on Structural Descriptions. SIAM Journal of Computing.
- Joshi, A.K and L.S. Levy (1980) Phrase Structures Trees Bear More Fruit than You would Have Thought. (Paper presented to the Annual Meeting of the Association for Computational Linguistics)
- Karttunen, L. and S. Peters (1979) Conventional Implicature. In Syntax and Semantics: Presupposition. Ed. by C.-K. Oh and D. Dinneen. 11. pp. 1-56. Academic Press.
- Keenan, E.L. (1974) The Functional Principle: Generalizing the Notion of 'subject of'. CLS 10:298-309.