The Higher Infinite

Summary Sheet - 24.118, Spring 2021

1 The Ordinals

1.1 How We'll Get to the Ordinals

Ordering \rightarrow Total Ordering \rightarrow Well-Ordering \rightarrow Well-Order Type \rightarrow Ordinal

1.2 Orderings

Think of $x<y$ as meaning " x precedes y ". We say that $<$ is an ordering on set A if and only if for any $a, b, c \in A$:

Asymmetry If $a<b$, then not- $(b<a)$.
Transitivity If $a<b$ and $b<c$, then $a<c$.

1.3 Total Orderings

A total ordering $<$ on A is an ordering on A such that for any distinct elements a, b of A :

Totality $a<b$ or $b<a$

1.4 Well-Orderings

A well-ordering $<$ of A is a total ordering on A such that:
Well-Ordering Every non-empty subset S of A has a $<$-smallest member.

1.5 Well-order types

The orderings $<_{1}$ and $<_{2}$ are of the same type if they are isomorphic.*

[^0]
1.6 The First Few Ordinals

ordinal	name of ordinal	well-order type represented			
$\}$	0				
$\{0\}$	0^{\prime}	\mid			
$\left\{0,0^{\prime}\right\}$	$0^{\prime \prime}$	$\\|$			
$\left\{0,0^{\prime}, 0^{\prime \prime}\right\}$	$0^{\prime \prime \prime}$	$\\|\\|$			
\vdots	\vdots				
$\left\{0,0^{\prime}, 0^{\prime \prime}, 0^{\prime \prime \prime}, \ldots\right\}$	ω	$\\|\\| \ldots$			
$\left\{0,0^{\prime}, 0^{\prime \prime}, 0^{\prime \prime \prime}, \ldots, \omega\right\}$	ω^{\prime}	$\\|\\| \ldots \mid$			
$\left\{0,0^{\prime}, 0^{\prime \prime}, 0^{\prime \prime \prime}, \ldots, \omega, \omega^{\prime}\right\}$	$\omega^{\prime \prime}$	$\\|\\|\ldots\\|$			
\vdots	\vdots	\vdots			

1.7 Constructing the Ordinals

Construction Principle At each stage, we introduce a new ordinal, namely: the set of all ordinals that have been introduced at previous stages.

Open-Endedness Principle However many stages have occurred, there is always a "next" stage, that is, a first stage after every stage considered so far. ${ }^{\dagger}$

1.8 Ordering the Ordinals

The ordinals are well-ordered by the following precedence relation:

$$
\alpha<_{o} \beta \leftrightarrow_{d f} \alpha \in \beta
$$

1.9 Representing Well-Order Types

Since every ordinal is a set of ordinals, the elements of an ordinal are always well-ordered by $<_{o}$. So we may set forth the following:

Representation Principle Each ordinal represents the well-order type that it itself instantiates under $<_{o}$.

1.10 Some Definitions

- $\alpha^{\prime}=\alpha \cup\{\alpha\}$
- A successor ordinal is an ordinal α such that $\alpha=\beta^{\prime}$ for some β.
- A limit ordinal is an ordinal that is not a successor ordinal.

[^1]
2 Ordinal Addition

The intuitive idea: A well-ordering of type $(\alpha+\beta)$ is the result of starting with a wellordering of type α and appending a well-ordering of type β at the end.
Formally:

$$
\begin{aligned}
& \alpha+0=\alpha \\
& \alpha+\beta^{\prime}=(\alpha+\beta)^{\prime} \\
& \alpha+\lambda=\bigcup\{\alpha+\beta: \beta<\lambda\}(\lambda \text { a limit ordinal })
\end{aligned}
$$

- Ordinal addition is associative: $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$.
- Ordinal addition is not commutative: it is not generally the case that $\alpha+\beta=\beta+\alpha$.

3 Ordinal Multiplication

The intuitive idea: A well-ordering of type $(\alpha \times \beta)$ is the result of starting with a wellordering of type β and replacing each position in the ordering with a well-ordering of type α.

Formally:

$$
\begin{aligned}
& \alpha \times 0=0 \\
& \alpha \times \beta^{\prime}=(\alpha \times \beta)+\alpha \\
& \alpha \times \lambda=\bigcup\{\alpha \times \beta: \beta<\lambda\}(\lambda \text { a limit ordinal })
\end{aligned}
$$

- Ordinal multiplication is associative: $(\alpha \times \beta) \times \gamma=\alpha \times(\beta \times \gamma)$.
- Ordinal multiplication is not commutative: it is not generally the case that $\alpha \times \beta=$ $\beta \times \alpha$.

4 Some Additional Operations

- Exponentiation:

$$
\begin{aligned}
& \alpha^{0}=0^{\prime} \\
& \alpha^{\beta^{\prime}}=\left(\alpha^{\beta}\right) \times \alpha \\
& \alpha^{\lambda}=\bigcup\left\{\alpha^{\beta}: \beta<\lambda\right\}(\lambda \text { a limit ordinal })
\end{aligned}
$$

- Tetration:

$$
\begin{aligned}
{ }^{0} \alpha & =0^{\prime} \\
\beta^{\prime} \alpha & =\left({ }^{\beta} \alpha\right)^{\alpha} \\
{ }^{\lambda} \alpha & =\bigcup\left\{{ }^{\beta} \alpha: \beta<\lambda\right\}(\lambda \text { a limit ordinal })
\end{aligned}
$$

- And so forth...
Some Additional Ordinals

6 A Visualization ${ }^{\ddagger}$

7 Ordinal Precedence v. Cardinal Precedence

We have discussed two different precedence relations, $<_{0}$ and $<$:

- $<_{o}$ is the precedence relation for ordinals.
$\alpha<_{o} \beta$ means that α precedes β in the hierarchy of ordinals.

[^2]- < is an ordering of set-cardinality.
$|A|<|B|$ means that there is an injection from A to B (but no bijection).
Important: $\alpha<_{o} \beta$ does not entail $|\alpha|<|\beta|$.

8 Ordinals as Blueprints for Large Sets

- An ordinal can be used as a "blueprint" for a sequence of applications of the power set and union operations.
- The farther up an ordinal is in the hierarchy of ordinals, the longer the sequence, and the greater the cardinality of the end result.

Specifically, each ordinal α can be used to characterize the set \mathfrak{B}_{α} :

$$
\mathfrak{B}_{\alpha}=\left\{\begin{array}{l}
\mathbb{N}, \text { if } \alpha=0 \\
\wp\left(\mathfrak{B}_{\beta}\right), \text { if } \alpha=\beta^{\prime} \\
\bigcup\left\{\mathfrak{B}_{\gamma}: \gamma<_{o} \alpha\right\} \text { if } \alpha \text { is a limit ordinal (other than } 0 \text {) }
\end{array}\right.
$$

9 Later Ordinals, Bigger Cardinalities

- By Cantor's Theorem: if $\alpha<_{o} \beta$, then $\left|\mathfrak{B}_{\alpha}\right|<\left|\mathfrak{B}_{\beta}\right|$.
- For instance:

$$
\omega<_{o}(\omega \times \omega)<_{o} \omega^{\omega}<_{o}{ }^{\omega} \omega \text {. So: }\left|\mathfrak{B}_{\omega}\right|<\left|\mathfrak{B}_{\omega \times \omega}\right|<\left|\mathfrak{B}_{\omega^{\omega}}\right|<\left|\mathfrak{B}_{\omega}\right| \text {. }
$$

10 Initial Ordinals

- Initial ordinal: an ordinal that precedes all other ordinals of the same cardinality.
- An initial ordinal κ can be used as proxy for its own cardinality: $\kappa=|\kappa|$.

11 The Beth Hierarchy

- $\beth_{\alpha}($ read "beth-alpha" $)$ is the initial ordinal of cardinality $\left|\mathfrak{B}_{\alpha}\right|$.
- So: $\beth_{\alpha}=\left|\mathfrak{B}_{\alpha}\right|$.
- $\beth_{0}=|\mathbb{N}|$ and $\beth_{0^{\prime}}=|\wp(\mathbb{N})|$ (so $\beth_{0^{\prime}}$ is an uncountable ordinal).

Since the beths are ordinals, they can be used to define sets bigger than anything we've considered so far. For instance:

- $\mathfrak{B}_{\beth_{0^{\prime}}}\left(\right.$ where $\left.\beth_{0^{\prime}}=|\wp(\mathbb{N})|\right)$
- $\mathfrak{B}_{\beth^{\omega}}\left(\right.$ where $\left.\beth_{\beth_{\omega}}=\left|\mathfrak{B}_{\beth_{\omega}}\right|\right)$

12 The Continuum Hypothesis

Continuum Hypothesis There is no set A such that $\beth_{0}<|A|<\beth_{1}$.
Generalized CH There is no set A such that $\beth_{\alpha}<|A|<\beth_{\alpha+1}$.

13 The Burali-Forti Paradox

Suppose, for reductio, that Ω is the set of all ordinals. Then:

- Since Ω consists of every ordinal, it consists of every ordinal that's been introduced so far. But a new ordinal is just the set every ordinal that's been introduced so far. So: Ω is an ordinal.
- If Ω was itself an ordinal, it would be a member of itself (and therefore have itself as a predecessor). But no ordinal can be its own predecessor. So: Ω is not an ordinal.

So there is no set of all ordinals!

[^0]: ${ }^{*}$ Let $<_{1}$ be an ordering on A and $<_{2}$ be an ordering on B. Then $<_{1}$ is isomorphic to $<_{2}$ if and only if there is a bijection f from A to B such that, for every x and y in $A, x<_{1} y$ if and only if $f(x)<_{2} f(y)$.

[^1]: ${ }^{\dagger}$ It is important to interpret the Open-Endedness Principle as entailing that there is no such thing as "all" stages-and therefore deliver the result that there is no such thing as "all" ordinals.

[^2]: \ddagger Source: https://commons.wikimedia.org/wiki/File:Omega-exp-omega-labeled.svg. File made available on Wikimedia under the Creative Commons CC0 1.0 Universal Public Domain Dedication. Pop-up casket (talk); original by User:Fool [CC0].

