The Higher Infinite Summary Sheet – 24.118, Spring 2021

1 The Ordinals

1.1 How We'll Get to the Ordinals

 $Ordering \rightarrow Total Ordering \rightarrow Well-Ordering \rightarrow Well-Order Type \rightarrow Ordinal$

1.2 Orderings

Think of x < y as meaning "x precedes y". We say that < is an **ordering** on set A if and only if for any $a, b, c \in A$:

Asymmetry If a < b, then not-(b < a).

Transitivity If a < b and b < c, then a < c.

1.3 Total Orderings

A total ordering < on A is an ordering on A such that for any distinct elements a, b of A:

Totality a < b or b < a

1.4 Well-Orderings

A well-ordering < of A is a total ordering on A such that:

Well-Ordering Every non-empty subset S of A has a <-smallest member.

1.5 Well-order types

The orderings $<_1$ and $<_2$ are of the same type if they are isomorphic.*

^{*}Let $<_1$ be an ordering on A and $<_2$ be an ordering on B. Then $<_1$ is **isomorphic** to $<_2$ if and only if there is a bijection f from A to B such that, for every x and y in A, $x <_1 y$ if and only if $f(x) <_2 f(y)$.

ordinal name of ordinal well-order type represented 0 {} 0'{0} $\{0, 0'\}$ $0^{\prime\prime}$ $\{0, 0', 0''\}$ 0‴ $\{0, 0', 0'', 0''', \dots\}$ |||... ω $\{0, 0', 0'', 0''', \dots, \omega\}$ ω' |||...| $\{0, 0', 0'', 0''', \dots, \omega, \omega'\}$ ω'' ||| . . . || ÷ :

1.6 The First Few Ordinals

1.7 Constructing the Ordinals

- **Construction Principle** At each stage, we introduce a new ordinal, namely: the set of all ordinals that have been introduced at previous stages.
- **Open-Endedness Principle** However many stages have occurred, there is always a "next" stage, that is, a first stage after every stage considered so far.[†]

1.8 Ordering the Ordinals

The ordinals are well-ordered by the following precedence relation:

$$\alpha <_o \beta \leftrightarrow_{df} \alpha \in \beta$$

1.9 Representing Well-Order Types

Since every ordinal is a set of ordinals, the elements of an ordinal are always well-ordered by $<_o$. So we may set forth the following:

Representation Principle Each ordinal represents the well-order type that it itself instantiates under $<_o$.

1.10 Some Definitions

- $\alpha' = \alpha \cup \{\alpha\}$
- A successor ordinal is an ordinal α such that $\alpha = \beta'$ for some β .
- A limit ordinal is an ordinal that is not a successor ordinal.

[†]It is important to interpret the Open-Endedness Principle as entailing that there is no such thing as "all" stages—and therefore deliver the result that there is no such thing as "all" ordinals.

2 Ordinal Addition

The intuitive idea: A well-ordering of type $(\alpha + \beta)$ is the result of starting with a well-ordering of type α and appending a well-ordering of type β at the end.

Formally: $\begin{array}{rcl} \alpha & + & 0 & = & \alpha \\ \alpha & + & \beta' & = & (\alpha + \beta)' \\ \alpha & + & \lambda & = & \bigcup \{\alpha + \beta : \beta < \lambda\} \ (\lambda \text{ a limit ordinal}) \end{array}$

- Ordinal addition is associative: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$.
- Ordinal addition is *not* commutative: it is not generally the case that $\alpha + \beta = \beta + \alpha$.

3 Ordinal Multiplication

The intuitive idea: A well-ordering of type $(\alpha \times \beta)$ is the result of starting with a wellordering of type β and replacing each position in the ordering with a well-ordering of type α .

Formally:

 $\begin{array}{rcl} \alpha & \times & 0 & = & 0 \\ \alpha & \times & \beta' & = & (\alpha \times \beta) + \alpha \\ \alpha & \times & \lambda & = & \bigcup \{\alpha \times \beta : \beta < \lambda\} \; (\lambda \; \text{a limit ordinal}) \end{array}$

- Ordinal multiplication is associative: $(\alpha \times \beta) \times \gamma = \alpha \times (\beta \times \gamma)$.
- Ordinal multiplication is *not* commutative: it is not generally the case that $\alpha \times \beta = \beta \times \alpha$.

4 Some Additional Operations

• Exponentiation:

• Tetration:

• And so forth...

Ordinals	
Additional	
Some	

well-order type represented 		$\omega \text{ times}$	ω times	$\ldots \} \ \cdots \ \cdots \ \cdots \cdots \dots $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[see below]	$\begin{bmatrix} \vdots & \vdots & \vdots \\ & \vdots & \vdots \\ & & \vdots \\ & & \\ & $
$\begin{array}{c} \text{members} \\ \{0,0',\ldots\} \\ \{0,0',\ldots,\omega\} \end{array}$	$\{0,0',\ldots,\omega,\omega+0',\ldots\}$ $\{0,0',\ldots,\omega,\omega+\omega,\omega+\omega+\omega,\omega+0',\ldots\}$	$\{0,\ldots,\omega,\ldots,\omega+\omega,\ldots,\omega+\omega,\ldots,\}$	$\{0,\ldots,\omega imes\omega,(\omega imes\omega)+0',(\omega imes\omega)+0'',\ldots\}$	$\ldots, \omega \times \omega, (\omega \times \omega) + 0', \ldots (\omega \times \omega) + \omega, (\omega \times \omega) + \omega + 0'.$	$0,\ldots,\omega\times\omega,\ldots(\omega\times\omega)+\omega,\ldots,(\omega\times\omega)+\omega+\omega\ldots\dots$	$\dots, \omega \times \omega, \dots (\omega \times \omega) + \omega, \dots, (\omega \times \omega) + \omega + \omega \dots \dots$	$\{0\ldots,\omega imes \omega,\ldots\omega imes \omega imes 0'',\ldots,\omega imes \omega imes 0'',\ldots\ldots\}$	$\{0,\ldots,\omega,\ldots,\omega imes 0'',\ldots,\omega imes 0'',\ldots\ldots\}$	$\lim_{\substack{\omega \in \mathbb{R}^{n} \\ \omega \text{ times}}} \ \dots\ \dots$
$\begin{array}{c} \operatorname{ordinal} \\ \omega \\ \omega + 0' \end{array}$	$\begin{array}{c} \alpha+\alpha\\ \alpha+\alpha+\alpha\\ \alpha+\alpha+\alpha\end{array}$	$\omega \times \omega$ = $\omega^{0''}$	(arepsilon imes arepsilon) + arepsilon	$(\omega \times \omega) + \omega + \omega \{0,\}$	$(\omega \times \omega) + (\omega \times \omega) = \omega \times \omega \times 0''$	$\alpha \times \omega \times 0''' \qquad $	$\mathcal{C} \times \mathcal{C} \times \mathcal{C} = \mathcal{O}^{0''}$	ω^{α}	$\mathcal{C}_{\mathcal{C}}^{\mathcal{C}}$: = =

Ŋ

7 Ordinal Precedence v. Cardinal Precedence

We have discussed two different precedence relations, $<_0$ and <:

- $<_o$ is the precedence relation for ordinals.
 - $\alpha <_o \beta$ means that α precedes β in the hierarchy of ordinals.

[‡] Source: https://commons.wikimedia.org/wiki/File:Omega-exp-omega-labeled.svg. File made available on Wikimedia under the Creative Commons CC0 1.0 Universal Public Domain Dedication. Pop-up casket (talk); original by User:Fool [CC0].

• < is an ordering of set-cardinality.

|A| < |B| means that there is an injection from A to B (but no bijection).

```
Important: \alpha <_o \beta does not entail |\alpha| < |\beta|.
```

8 Ordinals as Blueprints for Large Sets

- An ordinal can be used as a "blueprint" for a sequence of applications of the power set and union operations.
- The farther up an ordinal is in the hierarchy of ordinals, the longer the sequence, and the greater the cardinality of the end result.

Specifically, each ordinal α can be used to characterize the set \mathfrak{B}_{α} :

$$\mathfrak{B}_{\alpha} = \begin{cases} \mathbb{N}, \text{ if } \alpha = 0\\ \wp(\mathfrak{B}_{\beta}), \text{ if } \alpha = \beta'\\ \bigcup\{\mathfrak{B}_{\gamma} : \gamma <_{o} \alpha\} \text{ if } \alpha \text{ is a limit ordinal (other than 0)} \end{cases}$$

9 Later Ordinals, Bigger Cardinalities

- By Cantor's Theorem: if $\alpha <_o \beta$, then $|\mathfrak{B}_{\alpha}| < |\mathfrak{B}_{\beta}|$.
- For instance:

 $\omega <_o (\omega \times \omega) <_o \omega^{\omega} <_o {}^{\omega}\omega$. So: $|\mathfrak{B}_{\omega}| < |\mathfrak{B}_{\omega \times \omega}| < |\mathfrak{B}_{\omega^{\omega}}| < |\mathfrak{B}_{\omega\omega}|$.

10 Initial Ordinals

- Initial ordinal: an ordinal that precedes all other ordinals of the same cardinality.
- An initial ordinal κ can be used as proxy for its own cardinality: $\kappa = |\kappa|$.

11 The Beth Hierarchy

- \beth_{α} (read "beth-alpha") is the initial ordinal of cardinality $|\mathfrak{B}_{\alpha}|$.
- So: $\beth_{\alpha} = |\mathfrak{B}_{\alpha}|.$
- $\beth_0 = |\mathbb{N}|$ and $\beth_{0'} = |\mathcal{O}(\mathbb{N})|$ (so $\beth_{0'}$ is an **uncountable** ordinal).

Since the beths are *ordinals*, they can be used to define sets bigger than anything we've considered so far. For instance:

- $\mathfrak{B}_{\beth_{0'}}$ (where $\beth_{0'} = | \mathfrak{O}(\mathbb{N}) |)$
- $\mathfrak{B}_{\beth_{\beth_{\omega}}}$ (where $\beth_{\beth_{\omega}} = |\mathfrak{B}_{\beth_{\omega}}|$)

12 The Continuum Hypothesis

Continuum Hypothesis There is no set A such that $\beth_0 < |A| < \beth_1$.

Generalized CH There is no set A such that $\beth_{\alpha} < |A| < \beth_{\alpha+1}$.

13 The Burali-Forti Paradox

Suppose, for *reductio*, that Ω is the set of all ordinals. Then:

- Since Ω consists of every ordinal, it consists of every ordinal that's been introduced so far. But a new ordinal is just the set every ordinal that's been introduced so far. So: Ω is an ordinal.
- If Ω was itself an ordinal, it would be a member of itself (and therefore have itself as a predecessor). But no ordinal can be its own predecessor. So: Ω is not an ordinal.

So there is no set of all ordinals!