Omega-Sequence Paradoxes

Summary Sheet - 24.118, Spring 2021

1 What is a Paradox?

A paradox is an argument that appears to be valid, and goes from seemingly true premises to a seemingly false conclusion. So we must:

- learn to live with the conclusion;
- learn to live without one of the premises; or
- show that the reasoning is invalid.

An omega-sequence paradox is a paradox based on an ω-sequence $(\|\| \ldots)$ or a reverse ω-sequence (...|||).

2 Zeno's Paradox* [Paradox Grade: 2]

You wish to walk from point A to point B. In order to do so, you must carry out an ω-sequence of tasks:

But it's impossible to complete infinitely many tasks in a finite amount of time. So movement is impossible.

[^0]
3 Thomson's Lamp ${ }^{\dagger}$ [Paradox Grade: 3]

You have a lamp with a toggle button: press the button once and the lamp goes on, press it again and the lamp goes off. Here's what happens:

Time to midnight	Status of lamp shortly thereafter
$60 s$	off
$30 s$	on
$15 s$	off
$7.5 s$	on
\vdots	\vdots
$\frac{60}{2 n} s$	off
$\frac{60}{2^{2 n+1}} s$	on
\vdots	\vdots

Is the lamp on or off at midnight?

- For every time the lamp gets turned off before midnight, there is a later time before midnight when it gets turned on. So the lamp can't be off at midnight.
- For every time the lamp gets turned on before midnight, there is a later time before midnight when it gets turned off. So the lamp can't be on at midnight.

4 The Demon's Game ${ }^{\ddagger}$ [Paradox Grade: 4]

$P_{1}, P_{2}, P_{3}, \ldots$ take turns answering aye or nay:

- If exactly n people say aye $(n \in \mathbb{N})$, each person gets $\$ n$.
- If infinitely many people say aye, they all get nothing.

It seems rational for P_{k} to say aye: she can't hurt anyone and might help everyone. But if it's rational for P_{k} it's rational for everyone. So nobody gets anything.

[^1]
5 The Bomber's Paradox ${ }^{\S}$ [Paradox Grade: 6]

There are infinitely many bombs:

Bomb	When bomb is set to go off
B_{0}	$12: 00 \mathrm{pm}$
B_{1}	$11: 30 \mathrm{am}$
B_{2}	$11: 15 \mathrm{am}$
\vdots	\vdots
B_{k}	$\frac{1}{2^{k}}$ hours after $11: 00 \mathrm{am}$
\vdots	\vdots

Should one of the bombs go off, it will instantaneously disable all other bombs. So a bomb goes off if and only if no bombs have gone off before it:
(0) B_{0} goes off $\leftrightarrow B_{n}$ fails to go off $(n>0)$.
(1) B_{1} goes off $\leftrightarrow B_{n}$ fails to go off $(n>1)$.
(2) B_{2} goes off $\leftrightarrow B_{n}$ fails to go off $(n>2)$.
(k) B_{k} goes off $\leftrightarrow B_{n}$ fails to go off $(n>k)$.
$(\boldsymbol{k}+\mathbf{1}) B_{k+1}$ goes off $\leftrightarrow B_{n}$ fails to go off $(n>k+1)$.

Will any bombs go off?

6 Yablo's Paradox ${ }^{〔}$ [Paradox Grade: 8]

There are infinitely many sentences:

Label	Sentence
S_{0}	"For each $i>0$, sentence S_{i} is false"
S_{1}	"For each $i>1$, sentence S_{i} is false"
S_{2}	"For each $i>2$, sentence S_{i} is false"
\vdots	\vdots
S_{k}	"For each $i>k$, sentence S_{i} is false"

The meanings of our sentences guarantee that each of the following must be true:

[^2](0) S_{0} is true $\leftrightarrow S_{n}$ is false $(n>0)$.
(1) S_{1} is true $\leftrightarrow S_{n}$ is false $(n>1)$.
(2) S_{2} is true $\leftrightarrow S_{n}$ is false $(n>2)$.
(k) S_{k} is true $\leftrightarrow S_{n}$ is false $(n>k)$.
$(\boldsymbol{k}+\mathbf{1}) S_{k+1}$ is true $\leftrightarrow S_{n}$ is false $(n>k+1)$.

Which sentences are true and which ones are false?

7 Bacon's Problem | [Paradox Grade: 7]

- An omega sequence of prisoners: $P_{1}, P_{2}, P_{3}, \ldots$ (P_{1} is at the end of the line, in front of her is P_{2}, in front of him is P_{3}, and so forth.)
- Each person as assigned a red or blue hat, based on the outcome of a coin toss.
- Everyone can see the hats of people in front of her, but cannot see her own hat (or the hat of anyone behind her).
- At a set time, everyone has to guess the color of her own hat by crying out "Red!" or "Blue!".
- People who correctly call out the color of their own hats will be spared. Everyone else will be shot.

Problem: Find a strategy that $P_{1}, P_{2}, P_{3}, \ldots$ could agree upon in advance and that would guarantee that at most finitely many people are shot.

8 The Three Prisoners** [Paradox Grade: 2]

- Three prisoners. Each of them is assigned a red or blue hat, based on the outcome of a coin toss.
- Each of them can see the colors of the others' hats but has no idea about the color of his own hat.
- The prisoners are then taken into separate cells and asked about the color of their hat. They are free to offer an answer or remain silent.

[^3]| Prisoner A | Prisoner B | Prisoner C | Result of following Strategy |
| :---: | :---: | :---: | :---: |
| red | red | red | Everyone answers incorrectly |
| red | red | blue | C answers correctly |
| red | blue | red | B answers correctly |
| red | blue | blue | A answers correctly |
| blue | red | red | A answers correctly |
| blue | red | blue | B answers correctly |
| blue | blue | red | C answers correctly |
| blue | blue | blue | Everyone answers incorrectly |

Figure 1: The eight possible hat distributions, along with the result of applying the suggested strategy.

- If all three prisoners remain silent, all three will be killed.
- If one of them answers incorrectly, all three will be killed.
- If at least one prisoner offers an answer, and everyone who offers an answer answers correctly, then all three prisoners will be set free.

Problem: Find a strategy that the prisoners could agree upon ahead of time which would guarantee that their chance of survival is above 50%.

[^0]: *This is a variant of one of several paradoxes attributed to ancient philosopher Zeno of Elea, who lived in the 5th Century BC.

[^1]: †Thomson's Lamp was devised by the late James Thomson, who was a professor of philosophy at MIT (and was married to the great philosopher Judith Jarvis Thomson).
 ${ }^{\ddagger}$ I learned about this paradox from philosophers Frank Arntzenius, Adam Elga, and John Hawthorne.

[^2]: ${ }^{\S}$ This paradox is due to Josh Parsons, who was a fellow at Oxford until shortly before his untimely death in 2017. (It is a version of Bernadete's Paradox.)
 ${ }^{\text {T}}$ This paradox was discovered by Steve Yablo, who is a famous philosophy professor at MIT (and was a member of my dissertation committee, many years ago).

[^3]: ${ }^{\|}$This paradox is due to USC philosopher Andrew Bacon.
 ${ }^{* *}$ I don't know who invented it, but I learned about it thanks to philosopher and computer scientist Rohit Parikh, from the City University of New York.

