# Omega-Sequence Paradoxes Summary Sheet – 24.118, Spring 2021

## 1 What is a Paradox?

A **paradox** is an argument that appears to be valid, and goes from seemingly true premises to a seemingly false conclusion. So we must:

- learn to live with the conclusion;
- learn to live without one of the premises; or
- show that the reasoning is invalid.

An **omega-sequence paradox** is a paradox based on an  $\omega$ -sequence (|||...) or a reverse  $\omega$ -sequence (...||).

## 2 Zeno's Paradox<sup>\*</sup> [Paradox Grade: 2]

You wish to walk from point A to point B. In order to do so, you must carry out an  $\omega$ -sequence of tasks:



But it's impossible to complete infinitely many tasks in a finite amount of time. So movement is impossible.

<sup>\*</sup>This is a variant of one of several paradoxes attributed to ancient philosopher Zeno of Elea, who lived in the 5th Century BC.

# 3 Thomson's Lamp<sup> $\dagger$ </sup> [Paradox Grade: 3]

You have a lamp with a toggle button: press the button once and the lamp goes on, press it again and the lamp goes off. Here's what happens:

| Time to midnight                           | Status of lamp shortly thereafter |
|--------------------------------------------|-----------------------------------|
| 60s                                        | off                               |
| 30s                                        | on                                |
| 15s                                        | off                               |
| 7.5s                                       | on                                |
|                                            | :                                 |
| $\frac{\frac{60}{2^{2n}}s}{\frac{60}{60}}$ | off                               |
| $\frac{60}{2^{2n+1}}s$                     | on                                |
|                                            | :                                 |

Is the lamp on or off at midnight?

- For every time the lamp gets turned off before midnight, there is a later time before midnight when it gets turned on. So the lamp can't be off at midnight.
- For every time the lamp gets turned on before midnight, there is a later time before midnight when it gets turned off. So the lamp can't be on at midnight.

## 4 The Demon's $Game^{\ddagger}$ [Paradox Grade: 4]

 $P_1, P_2, P_3, \ldots$  take turns answering *aye* or *nay*:

- If exactly n people say aye  $(n \in \mathbb{N})$ , each person gets n.
- If infinitely many people say *aye*, they all get nothing.

It seems rational for  $P_k$  to say *aye*: she can't hurt anyone and might help everyone. But if it's rational for  $P_k$  it's rational for everyone. So nobody gets anything.

<sup>&</sup>lt;sup>†</sup>Thomson's Lamp was devised by the late James Thomson, who was a professor of philosophy at MIT (and was married to the great philosopher Judith Jarvis Thomson).

<sup>&</sup>lt;sup>‡</sup>I learned about this paradox from philosophers Frank Arntzenius, Adam Elga, and John Hawthorne.

# 5 The Bomber's $Paradox^{\S}$ [Paradox Grade: 6]

There are infinitely many bombs:

| Bomb  | When bomb is set to go off          |
|-------|-------------------------------------|
| $B_0$ | 12:00pm                             |
| $B_1$ | 11:30am                             |
| $B_2$ | 11:15am                             |
| ÷     | ÷                                   |
| $B_k$ | $\frac{1}{2^k}$ hours after 11:00am |
| ÷     | :                                   |

Should one of the bombs go off, it will instantaneously disable all other bombs. So a bomb goes off if and only if no bombs have gone off before it:

- (0)  $B_0$  goes off  $\leftrightarrow B_n$  fails to go off (n > 0).
- (1)  $B_1$  goes off  $\leftrightarrow B_n$  fails to go off (n > 1).
- (2)  $B_2$  goes off  $\leftrightarrow B_n$  fails to go off (n > 2). :

(k)  $B_k$  goes off  $\leftrightarrow B_n$  fails to go off (n > k).

(k+1)  $B_{k+1}$  goes off  $\leftrightarrow B_n$  fails to go off (n > k+1).

Will any bombs go off?

÷

#### 6 Yablo's Paradox<sup>¶</sup> [Paradox Grade: 8]

There are infinitely many sentences:

The meanings of our sentences guarantee that each of the following must be true:

<sup>&</sup>lt;sup>§</sup>This paradox is due to Josh Parsons, who was a fellow at Oxford until shortly before his untimely death in 2017. (It is a version of Bernadete's Paradox.)

<sup>&</sup>lt;sup>¶</sup>This paradox was discovered by Steve Yablo, who is a famous philosophy professor at MIT (and was a member of my dissertation committee, many years ago).

- (0)  $S_0$  is true  $\leftrightarrow S_n$  is false (n > 0).
- (1)  $S_1$  is true  $\leftrightarrow S_n$  is false (n > 1).
- (2)  $S_2$  is true  $\leftrightarrow S_n$  is false (n > 2).
- (k)  $S_k$  is true  $\leftrightarrow S_n$  is false (n > k).
- (k+1)  $S_{k+1}$  is true  $\leftrightarrow S_n$  is false (n > k+1).

Which sentences are true and which ones are false?

### 7 Bacon's Problem<sup> $\parallel$ </sup> [Paradox Grade: 7]

- An omega sequence of prisoners:  $P_1, P_2, P_3, \ldots$  ( $P_1$  is at the end of the line, in front of her is  $P_2$ , in front of him is  $P_3$ , and so forth.)
- Each person as assigned a red or blue hat, based on the outcome of a coin toss.
- Everyone can see the hats of people in front of her, but cannot see her own hat (or the hat of anyone behind her).
- At a set time, everyone has to guess the color of her own hat by crying out "Red!" or "Blue!".
- People who correctly call out the color of their own hats will be spared. Everyone else will be shot.

*Problem:* Find a strategy that  $P_1, P_2, P_3, \ldots$  could agree upon in advance and that would guarantee that at most finitely many people are shot.

#### 8 The Three Prisoners<sup>\*\*</sup> [Paradox Grade: 2]

- Three prisoners. Each of them is assigned a red or blue hat, based on the outcome of a coin toss.
- Each of them can see the colors of the others' hats but has no idea about the color of his own hat.
- The prisoners are then taken into separate cells and asked about the color of their hat. They are free to offer an answer or remain silent.

<sup>&</sup>lt;sup>||</sup>This paradox is due to USC philosopher Andrew Bacon.

<sup>\*\*</sup>I don't know who invented it, but I learned about it thanks to philosopher and computer scientist Rohit Parikh, from the City University of New York.

| Prisoner $A$ | Prisoner ${\cal B}$ | Prisoner ${\cal C}$ | Result of following Strategy |
|--------------|---------------------|---------------------|------------------------------|
| red          | red                 | red                 | Everyone answers incorrectly |
| red          | red                 | blue                | ${\cal C}$ answers correctly |
| red          | blue                | red                 | B answers correctly          |
| red          | blue                | blue                | A answers correctly          |
| blue         | red                 | red                 | A answers correctly          |
| blue         | red                 | blue                | B answers correctly          |
| blue         | blue                | red                 | ${\cal C}$ answers correctly |
| blue         | blue                | blue                | Everyone answers incorrectly |

Figure 1: The eight possible hat distributions, along with the result of applying the suggested strategy.

- If all three prisoners remain silent, all three will be killed.
- If one of them answers incorrectly, all three will be killed.
- If at least one prisoner offers an answer, and everyone who offers an answer answers correctly, then all three prisoners will be set free.

*Problem:* Find a strategy that the prisoners could agree upon ahead of time which would guarantee that their chance of survival is above 50%.