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1 Two Kinds of Probability

Subjective Probability A person’s subjective probability in p is the degree to which
she is confident in p.

Example: Jones’s subjective probability that it’ll rain tomorrow is 0.3 because she
is 30% confident that it’ll rain tomorrow.

Objective Probability The objective probability of an event is meant to be a feature
of the world that does not depend on the beliefs of any particular subject.

Example: the objective probability that a particle of 256Sg will decay in the next
8.9 seconds is 50%.

2 How are they related?

The Objective-Subjective Connection The objective probability of A at time t is
the subjective probability that a perfectly rational agent would assign to A, if she
had perfect information about the world at times ≤ t and no information about
the world at times > t.∗

3 Subjective Probability

A credence function for subject S is a function that assigns to each proposition a real
number between 0 and 1, representing S’s degree of confindence in that proposition

What does it take for a credence function to be rational?

1. internal coherence;

2. update by conditionalization;

3. Bayes’ Law;

4. the Principle of Indifference.

∗Here I am tacitly presupposing that a perfectly rational agent is always certain about the objective
probabilities at t, given full information about how the world is before t. So, in particular, for each
complete history of the world up to t, Ht, there is a specification Pt of the objective probabilities at t
such that the agent treats Ht and HtPt as equivalent. (This assumption is potentially controversial but
adds simplicity to our discussion.)



3.1 Internal Coherence

For a credence function to be internally coherent is for it to constitute a probability
function.

A probability function, p(. . .), is an assignment of real numbers between 0 and 1 to
propositions that satisfies the following two coherence conditions:

Necessity p(A) = 1 whenever A is a necessary truth

Additivity p(A or B) = p(A) + p(B) whenever A and B are incompatible propositions

3.2 Update by Conditionalization

If S is rational, she will update here credences as follows upon learning that B:

pnew(A) = pold(A|B)

where pold is the function describing S’s credences before she learned that B, and
pnew is the function describing her credences after she learned that B.

3.3 Bayes’ Law

p(AB) = p(A) · p(B|A)

3.4 The Principle of Indifference

Here’s what we’d like to have in place:

Principle of Indifference Consider a set of propositions and suppose one knows that
exactly one of them is true. Suppose, moreover, that one has no more reason to
believe any one of them than any other. Then, insofar as one is rational, one should
assign equal credence to each proposition in the set.

Unfortunately, this principle leads to inconsistency as stated. For instance:

A factory produces cubes with a side-length l ≤ 1. What is the probability
that l ∈ (0, 1

2
]?

Argument 1 (length):

• There is just as much reason to think that l ∈ (0, 1
2
] as there is to think

that l ∈ (1
2
, 1].

• By the Principle of Indifference, p(l ∈ (0, 1
2
]) = p(l ∈ (1

2
, 1]).

• So p(l ∈ (0, 1
2
]) = 1

2
.

Argument 2 (area):



• There is just as much reason to think that a ∈ (0, 1
2
] as there is to think

that a ∈ (1
2
, 1].

• By the Principle of Indifference, p(a ∈ (0, 1
2
]) = p(a ∈ (1

2
, 1]).

• So p(a ∈ (0, 1
2
]) = 1

2
.

But wait! l ∈ (0, 1
2
]↔ a ∈ (0, 1

4
].

4 Objective Probability

By the Objective-Subjective Connection, our conclusions about rational subjective prob-
ability deliver tell us that the objective probabilities:

1. constitute a probability function;

2. update by an analogue of conditionalization;

3. satisfy Bayes’ Law;

4. [satisfy a Principle of Indifference?].

5 Yes, but what is objective probability?

5.1 Frequentism

What is it for the objective probability of a coin’s landing Heads† to be 50%?

• According to frequentism, it is for 50% of coin tosses to land Heads.

• According to hypothetical frequentism, it is for the following subjunctive con-
ditional to be true: if sufficiently many coin tosses took place, 50% of them would
land Heads.

5.2 The Law of Large Numbers

Upon reflection, frequentism is obviously incorrect. What is true is this:

If the coin were tossed a sufficiently large number of times, then it would with
very high probability land Heads approximately 50% of the time.

More generally and precisely:

Law of Large Numbers Suppose that events of type T have a probability of p of
resulting in outcome O. Then, for any real numbers ε and δ larger than zero, there
is an N such that the following will be true with a probability of at least 1− ε:

If M>N events of type T occur, the proportion of them that result in
outcome O will be p± δ.

†Think of a “coin toss” as the result of observing a particle of 256Sg for 8.9 seconds. If the particle
decays within that period, our “coin” is said to have landed Heads; otherwise it is said to have landed
Tails.



5.3 Rationalism

• According to rationalism, there is nothing more to objective probability than the
Objective-Subjective Connection.

• A localist agrees with rationalism and adds that the the objective probabilities
are only well-defined in certain special circumstances; in particular, circumstances
in which there is an unproblematic way of deploying a Principle of Indifference.

6 The Principle of Countable Additivity

(Finite) Additivity p(A or B) = p(A) + p(B)

whenever A and B are incompatible propositions

Countable Additivity p (A1 orA2 or . . .) = p(A1) + p(A2) + . . .

whenever A1, A2, . . . are countably many propositions with Ai and Aj incompatible
for i 6= j.

6.1 Against Countable Additivity

• God has selected a positive integer, and that you have no idea which.

• For n a positive integer, what credence should you assign to the proposition, Gn,
that God selected n?

Countable Additivity entails that your credences should remain undefined (unless you’re
prepared to give different answers for different choices of n).

Proof: suppose otherwise. Then p(Gn) = r, for r ∈ [0, 1].

• Suppose r = 0. By Countable Additivity:

p(G1 or G2 or G3 or . . .) = p(G1) + p(G2) + p(G3) + . . .

= 0 + 0 + 0 + . . .︸ ︷︷ ︸
once for each integer

= 0

• Suppose r > 0. By Countable Additivity:

p(G1 or G2 or G3 or . . .) = p(G1) + p(G2) + p(G3) + . . .

= r + r + r + . . .︸ ︷︷ ︸
once for each integer

= ∞

Moral: Countable Additivity entails that there is no way of distributing probability
uniformly across a countably infinite set of (mutually exclusive and jointly exhaustive)
propositions.



6.1.1 Infinitesimals to the rescue?

What if we had an infinitesimal value ι with the following property?

ι+ ι+ ι+ . . .︸ ︷︷ ︸
once for each positive integer

= 1

Then:

p(G1 or G3 or G5 or . . .) = p(G1) + p(G3) + p(G5) + . . .

= ι+ ι+ ι+ . . .︸ ︷︷ ︸
once for each positive integer

= 1

and
p(G2 or G4 or G6 or . . .) = p(G2) + p(G4) + p(G6) + . . .

= ι+ ι+ ι+ . . .︸ ︷︷ ︸
once for each positive integer

= 1

So, by (finite) Additivity:

p(G1 or G2 or G3 or . . .) = 2 (!)

6.2 For Countable Additivity

• X, Y ⊆ Z+

• p(X) is the probability that God selects a number in X.

• p(X|Y ) is the probability that God selects a number in X given that She selects a
number in Y .

Here is a natural way of characterizing p(X) and p(X|Y ):

p(X|Y ) =df lim
n→∞

|X ∩ Y ∩ {1, 2, . . . , n}|
|Y ∩ {1, 2, . . . , n}|

p(X) =df p(X|Z+)

• p(X) is finitely additive but not countably additive.

• p(X) is not well-defined for arbitrary sets of integers.‡

Also, there is a set S and a partition Ei of Z+ such that:

• p(S) = 0

• p(S|Ei) ≥ 1/2 for each Ei.

‡For instance, when X consists of the integers k such that 2m ≤ k < 2m+1, for some even m.



Example:

S = {12, 22, 32, . . . }; Ei be the set of powers of i (whenever i which is not a
power of any other positive integer). In other words:

S = {1, 4, 9, 16, 25, . . . }
E1 = {1}
E2 = {2, 4, 8, 16, 32, . . . }
E3 = {3, 9, 27, 81, 243, . . . }

[No E4, since 4 = 22]
E5 = {5, 25, 125, 625, 3125, . . . }

...

6.2.1 Is this really so bad?

Yes. There is a sequence of bets BE1 , BE2 , BE3 , BE5 , . . . such that:

• you are confident that you ought to take each of the bets,

• you are 100% confident that you will lose money if she takes them all.

BEi
: Suppose God selects a number in Ei. Then you’ll receive $2 if the selected number
is in S and you’ll be forced to pay $1 if the selected number is not in S. (If the
selected number is not in Ei, then the bet is called off and no money exchanges
hands.)

Problems of this general form are inescapable: they will occur whenever a probability
function on a countable set of possibilities fails to be countably additive.

7 The Two-Envelope Paradox

• Two envelopes:

– one contains $n, for n chosen at random from Z+.

– the other contains 2n.

• You are handed one of the envelopes, but don’t know which.

• Then you are offered the chance to switch. Should you switch?

An argument for switching:

Say that your envelope contains $k. If k is odd, you should switch. If k is
even, there’s a 0.5 chance that the other envelope has $2k and a 0.5 chance
that the other envelope has $k/2. So:

EV (switch) = $k/2 · 0.5 + $2k · 0.5 = 5/4 · $k

EV (not switch) = $k



7.1 Broome’s Variant of the Paradox

• Two envelopes:

– Toss a die until it lands One or Two. If the die first lands One or Two on the
kth toss, place 2k−1 in the first envelope.

– Place twice that amount in the other envelope.


