Non-Measurable Sets
 Summary Sheet - 24.118, Spring 2021

1 Additive notions of size

- the length of two (non-overlapping) line segments placed side by side is the length of the first plus the length of the second;
- the mass of two (non-overlapping) objects taken together is the mass of the first plus the mass of the second.
- The probability that either of two (incompatible) events occur is the probability that the first occur plus the probability that the second occur;

The notion of measure is a very abstract way of thinking about additive notions of size.

2 Generalizing the notion of length

The standard notion of length:

- $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$
- Length $([a, b])=b-a$.

2.1 The Borel Sets

A Borel Set is a set that you can get to by performing finitely many applications of the operations of complementation and countable union on a family of line segments.*

- The complementation operation takes each set A to its complement, $\bar{A}=\mathbb{R}-A$.
- The countable union operation takes each countable family of sets $A_{1}, A_{2}, A_{3}, \ldots$ to their union, $\bigcup\left\{A_{1}, A_{2}, A_{3} \ldots\right\}$.

[^0]
2.2 Lebesgue Measure

There is exactly one function λ on the Borel Sets that satisfies these three conditions:
Length on Segments $\lambda([a, b])=b-a$ for every $a, b \in \mathbb{R}$.

Countable Additivity

$$
\lambda\left(\bigcup\left\{A_{1}, A_{2}, A_{3}, \ldots\right\}\right)=\lambda\left(A_{1}\right)+\lambda\left(A_{2}\right)+\lambda\left(A_{3}\right)+\ldots
$$

whenever A_{1}, A_{2}, \ldots is a countable family of disjoint sets for each of which λ is defined.

Non-Negativity $\lambda(A)$ is either a non-negative real number or the infinite value ∞, for any set A in the domain of λ.

- a function on the Borel Sets is a measure if and only if it satisfies Countable Additivity and Non-Negativity (and assigns the value 0 to the empty set).
- the Lebesgue Measure is the (unique) measure λ that satisfies Length on Segments. ${ }^{\dagger}$

3 Uniformity

The Lebesgue Measure, λ, satisfies:
Uniformity $\mu\left(A^{c}\right)=\mu(A)$, whenever $\mu(A)$ is well-defined and A^{c} is the result of adding $c \in \mathbb{R}$ to each member of A.

3.1 Probability Measures

Two ways of randomly selecting a number from $[0,1]$:
Standard Coin-Toss Procedure You toss a fair coin once for each natural number. Each time the coin lands Heads you write down a zero, and each time it lands Tails you write down a one. This gives you an infinite binary sequence $\left\langle d_{1}, d_{2}, d_{3}, \ldots\right\rangle$, Pick $0 . d_{1} d_{2} d_{3} \ldots$ (in binary notation). \ddagger

- We get uniformity:

[^1]

- Given certain assumptions about the probabilities of sequences of coin tosses, we get the Lebesgue Measure.

Square Root Coin-Toss Procedure As before, but this time you pick $\sqrt{0 . d_{1} d_{2} d_{3} \ldots}$ (in binary notation).

- We do not get uniformity:

4 Non-Measurable Sets

- There are subsets of \mathbb{R} that are non-measurable:

They cannot be assigned a measure by any extension of λ, without giving up on Non-Negativity, Countable Additivity, or Uniformity.

5 The Axiom of Choice

Proving that there are non-measurable sets requires:
Axiom of Choice Every set of non-empty, non-overlapping sets has a choice set.
(A choice set for set A is a set that contains exactly one member from each member of A.)

6 Defining the Vitali Sets

6.1 A sketch of the construction

- Define an (uncountable) partition \mathcal{U} of $[0,1)$.
- Use the Axiom of Choice to pick a representative from each cell of \mathcal{U}.
- Use these representatives to define a (countable) partition \mathcal{C} of $[0,1)$.
- A Vitali Set is a cell of \mathcal{C}.

6.2 Defining \mathcal{U}

 $a, b \in[0,1)$ are in the same cell if and only if $a-b \in \mathbb{Q}$.
6.3 Defining \mathcal{C}

- \mathcal{C} has a cell C_{q} for each rational number $q \in \mathbb{Q}^{[0,1)}$.
- C_{0} is the set of representatives of cells of \mathcal{U}.
- C_{q} is the set of numbers $x \in[0,1)$ which are at a "distance" of q from the representative of their cell in \mathcal{U}.

Here "distance" is measured by bending $[0,1)$ into a circle:

and traveling counter-clockwise. For instance, $\frac{1}{4}$ is at "distance" $\frac{1}{2}$ from $\frac{3}{4}$:

7 A Vitali Set Cannot Be Measured

7.1 Assumptions

Countable Additivity

$$
\lambda\left(\bigcup\left\{A_{1}, A_{2}, A_{3}, \ldots\right\}\right)=\lambda\left(A_{1}\right)+\lambda\left(A_{2}\right)+\lambda\left(A_{3}\right)+\ldots
$$

whenever A_{1}, A_{2}, \ldots is a countable family of disjoint sets for each of which λ is defined.

Non-Negativity $\lambda(A)$ is either a non-negative real number or the infinite value ∞, for any set A in the domain of λ.

Uniformity $\mu\left(A^{c}\right)=\mu(A)$, whenever $\mu(A)$ is well-defined and A^{c} is the result of adding $c \in \mathbb{R}$ to each member of A.

7.2 The Proof

- Suppose otherwise: $\lambda\left(C_{q}\right)$ is well-defined for some $q \in \mathbb{Q}^{[0,1)}$.
- By Uniformity, $\lambda\left(C_{q}^{\prime}\right)=\lambda\left(C_{q}\right)$ for any $q^{\prime} \in \mathbb{Q}^{[0,1)}$.
- By Non-Negativity, $\lambda\left(C_{q}\right)$ is either 0 , or a positive real number, or ∞.
- By Countable Additivity, it can't be any of these:
- Suppose $\lambda\left(C_{q}\right)=0$. By Countable Additivity:

$$
\begin{aligned}
\lambda([0,1)) & =\lambda\left(C_{q}\right)+\lambda\left(C_{q^{\prime}}\right)+\ldots \\
& =\underbrace{0+0+0+\ldots}_{\text {once for each integer }} \\
& =0
\end{aligned}
$$

- Suppose $\lambda\left(C_{q}\right)=r>0$. By Countable Additivity:

$$
\begin{aligned}
\lambda([0,1)) & =\lambda\left(C_{q}\right)+\lambda\left(C_{q^{\prime}}\right)+\ldots \\
& =\underbrace{r+r+r+\ldots}_{\text {once for each integer }} \\
& =\infty
\end{aligned}
$$

Moral: There is no way of assigning a measure to a Vitali set without giving up on Uniformity, Non-Negativity or Countable Additivity.

8 Revising Our Assumptions?

- Giving up on Uniformity means changing the subject: the whole point of our enterprise is to find a way of extending the notion of Lebesgue Measure without giving up on uniformity.
- Non-Negativity and Countable Additivity are not actually needed to prove the existence of non-measurable sets.
- Some mathematical theories would be seriously weakened by giving up on the Axiom of Choice.

[^0]: *Formally, the Borel Sets are the members of the smallest set \mathscr{B} such that: (i) every line segment is in $\mathscr{B},(i i)$ if a set is in \mathscr{B}, then so is its complement, and (iii) if a countable family of sets is in \mathscr{B}, then so is its union.

[^1]: ${ }^{\dagger}$ We say that a set $A \subseteq \mathbb{R}$ is Lebesgue Measurable if and only if $A=A^{B} \cup A^{0}$, for A^{B} a Borel Set and A^{0} a subset of some Borel Set of Lebesgue Measure zero. We apply λ to Lebesgue measurable sets that are not Borel sets by stipulating that $\lambda\left(A^{B} \cup A^{0}\right)=\lambda\left(A^{B}\right)$.
 ${ }^{\ddagger}$ Rational numbers have two different binary expansions: one ending in 0 s and the other ending in 1s. To simplify the present discussion, I assume that the Coin-Toss Procedure is rerun if the output corresponds to a binary expansion ending in 1s.

