Non-Measurable Sets Summary Sheet – 24.118, Spring 2021

1 Additive notions of size

- the **length** of two (non-overlapping) line segments placed side by side is the length of the first plus the length of the second;
- the **mass** of two (non-overlapping) objects taken together is the mass of the first plus the mass of the second.
- The **probability** that either of two (incompatible) events occur is the probability that the first occur plus the probability that the second occur;

The notion of **measure** is a very abstract way of thinking about additive notions of size.

2 Generalizing the notion of length

The standard notion of length:

- $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$
- Length([a, b]) = b a.

2.1 The Borel Sets

A **Borel Set** is a set that you can get to by performing finitely many applications of the operations of *complementation* and *countable union* on a family of line segments.*

- The complementation operation takes each set A to its complement, $\overline{A} = \mathbb{R} A$.
- The countable union operation takes each countable family of sets A_1, A_2, A_3, \ldots to their union, $\bigcup \{A_1, A_2, A_3, \ldots \}$.

^{*}Formally, the Borel Sets are the members of the smallest set \mathscr{B} such that: (i) every line segment is in \mathscr{B} , (ii) if a set is in \mathscr{B} , then so is its complement, and (iii) if a countable family of sets is in \mathscr{B} , then so is its union.

2.2 Lebesgue Measure

There is exactly one function λ on the Borel Sets that satisfies these three conditions:

Length on Segments $\lambda([a, b]) = b - a$ for every $a, b \in \mathbb{R}$.

Countable Additivity

$$\lambda\left(\bigcup\{A_1, A_2, A_3, \ldots\}\right) = \lambda(A_1) + \lambda(A_2) + \lambda(A_3) + \ldots$$

whenever A_1, A_2, \ldots is a countable family of disjoint sets for each of which λ is defined.

- **Non-Negativity** $\lambda(A)$ is either a non-negative real number or the infinite value ∞ , for any set A in the domain of λ .
 - a function on the Borel Sets is a **measure** if and only if it satisfies Countable Additivity and Non-Negativity (and assigns the value 0 to the empty set).
 - the **Lebesgue Measure** is the (unique) measure λ that satisfies Length on Segments.[†]

3 Uniformity

The Lebesgue Measure, λ , satisfies:

Uniformity $\mu(A^c) = \mu(A)$, whenever $\mu(A)$ is well-defined and A^c is the result of adding $c \in \mathbb{R}$ to each member of A.

3.1 Probability Measures

Two ways of randomly selecting a number from [0, 1]:

- Standard Coin-Toss Procedure You toss a fair coin once for each natural number. Each time the coin lands Heads you write down a zero, and each time it lands Tails you write down a one. This gives you an infinite binary sequence $\langle d_1, d_2, d_3, \ldots \rangle$, Pick $0.d_1d_2d_3\ldots$ (in binary notation).[‡]
 - We get uniformity:

[†]We say that a set $A \subseteq \mathbb{R}$ is **Lebesgue Measurable** if and only if $A = A^B \cup A^0$, for A^B a Borel Set and A^0 a subset of some Borel Set of Lebesgue Measure zero. We apply λ to Lebesgue measurable sets that are not Borel sets by stipulating that $\lambda(A^B \cup A^0) = \lambda(A^B)$.

[‡]Rational numbers have two different binary expansions: one ending in 0s and the other ending in 1s. To simplify the present discussion, I assume that the Coin-Toss Procedure is rerun if the output corresponds to a binary expansion ending in 1s.

• Given certain assumptions about the probabilities of sequences of coin tosses, we get the Lebesgue Measure.

Square Root Coin-Toss Procedure As before, but this time you pick $\sqrt{0.d_1d_2d_3...}$ (in binary notation).

• We do not get uniformity:

4 Non-Measurable Sets

• There are subsets of \mathbb{R} that are **non-measurable**:

They cannot be assigned a measure by any extension of λ , without giving up on Non-Negativity, Countable Additivity, or Uniformity.

5 The Axiom of Choice

Proving that there are non-measurable sets requires:

Axiom of Choice Every set of non-empty, non-overlapping sets has a choice set.

(A **choice set** for set A is a set that contains exactly one member from each member of A.)

6 Defining the Vitali Sets

6.1 A sketch of the construction

- Define an (uncountable) partition \mathcal{U} of [0, 1).
- Use the Axiom of Choice to pick a representative from each cell of \mathcal{U} .
- Use these representatives to define a (countable) partition \mathcal{C} of [0, 1).
- A Vitali Set is a cell of \mathcal{C} .

6.2 Defining \mathcal{U}

 $a, b \in [0, 1)$ are in the same cell if and only if $a - b \in \mathbb{Q}$.

6.3 Defining C

- \mathcal{C} has a cell C_q for each rational number $q \in \mathbb{Q}^{[0,1)}$.
- C_0 is the set of representatives of cells of \mathcal{U} .
- C_q is the set of numbers $x \in [0, 1)$ which are at a "distance" of q from the representative of their cell in \mathcal{U} .

Here "distance" is measured by bending [0, 1) into a circle:

and traveling counter-clockwise. For instance, $\frac{1}{4}$ is at "distance" $\frac{1}{2}$ from $\frac{3}{4}$:

7 A Vitali Set Cannot Be Measured

7.1 Assumptions

Countable Additivity

$$\lambda\left(\bigcup\{A_1, A_2, A_3, \ldots\}\right) = \lambda(A_1) + \lambda(A_2) + \lambda(A_3) + \ldots$$

whenever A_1, A_2, \ldots is a countable family of disjoint sets for each of which λ is defined.

- **Non-Negativity** $\lambda(A)$ is either a non-negative real number or the infinite value ∞ , for any set A in the domain of λ .
- Uniformity $\mu(A^c) = \mu(A)$, whenever $\mu(A)$ is well-defined and A^c is the result of adding $c \in \mathbb{R}$ to each member of A.

7.2 The Proof

- Suppose otherwise: $\lambda(C_q)$ is well-defined for some $q \in \mathbb{Q}^{[0,1)}$.
- By Uniformity, $\lambda(C'_q) = \lambda(C_q)$ for any $q' \in \mathbb{Q}^{[0,1)}$.
- By Non-Negativity, $\lambda(C_q)$ is either 0, or a positive real number, or ∞ .
- By Countable Additivity, it can't be any of these:
 - Suppose $\lambda(C_q) = 0$. By Countable Additivity:

$$\lambda([0,1)) = \lambda(C_q) + \lambda(C_{q'}) + \dots$$
$$= \underbrace{0 + 0 + 0 + \dots}_{\text{once for each integer}}$$
$$= \underbrace{0}$$

- Suppose $\lambda(C_q) = r > 0$. By Countable Additivity:

$$\lambda([0,1)) = \lambda(C_q) + \lambda(C_{q'}) + \dots$$
$$= \underbrace{r + r + r + \dots}_{\text{once for each integer}}$$
$$= \infty$$

Moral: There is no way of assigning a measure to a Vitali set without giving up on Uniformity, Non-Negativity or Countable Additivity.

8 Revising Our Assumptions?

- Giving up on **Uniformity** means *changing the subject*: the whole point of our enterprise is to find a way of extending the notion of Lebesgue Measure without giving up on uniformity.
- Non-Negativity and Countable Additivity are not actually needed to prove the existence of non-measurable sets.
- Some mathematical theories would be seriously weakened by giving up on the Axiom of Choice.