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1 The Theorem

Banach-Tarski Theorem It is possible to decompose a ball into a finite number of
pieces and reassemble the pieces (without changing their size or shape) so as to get
two balls, each of the same size as the original.

1.1 Warm-Up Case 1: A Line

It is possible to decompose [0,∞)−{1} into two distinct parts, and reassemble
the parts (without changing their size or shape) so as to get back [0,∞).
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• Decompose [0,∞)− {1} into: (i) {2, 3, 4, . . . } and (ii) everything else.

• Translate {2, 3, 4, . . . } one unit to the left.

1.2 Warm-Up Case 2: A Circle

It is possible to decompose S1 − {p} into two distinct parts, and reassemble
the parts (without changing their size or shape) so as to get back S1.
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• Decompose S1 − {p} into: (i) B and (ii) everything else.

• Rotate B one unit counter-clockwise.

B =
{
x ∈ S1 : x is n units clockwise from p (n ∈ Z+)

}
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The first six members of B.



1.3 Warm-Up Case 3: The Cayley Graph

It is possible to decompose (the set of endpoints of) the Cayley Graph∗ into
four distinct parts, and reassemble the parts (albeit changing their size) so as
to get back two copies of the same size as the original.
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• Decompose Ce into quadrants: Le, Re, U e, De.

• Make first copy by expanding Re and translating left to meet Le.

• Make second copy by expanding U e and translating down to meet De.

1.4 A more abstract description of the procedure

Notation: if X is a set of Cayley Paths, let
←
X be the set that results from

eliminating the first step from each of the Cayley Paths in X.

By the definition of Cayley Paths:

(α) C =
←
R ∪L

(β) C =
←
D ∪U

Since every Cayley Path has a unique endpoint, (α) and (β) entail:

∗A Cayley Path is a finite sequence of steps starting from c, where no step follows its inverse. The
Cayley Graph C is the set of Cayley Paths. Xe is the set of endpoints of Cayley paths in X.



(α′) Ce =
(←
R
)e
∪ Le

(β′) Ce =
(←
D
)e
∪ U e

On our two-dimensional interoperation of the Cayley Graph, this delivers the intended
result because:

1. Ce is decomposed into U e, De, Le and Re (ignoring the central vertex)

2. One can get from Re to
(←
R
)e

, and from De to
(←
D
)e

, by performing a translation

together with an expansion. (See figure 1.)

[So our duplication requires only translations and expansions.]

2 Back to the Main Event

To prove the actual theorem, we’re going to work with a different interpretation of
the Cayley Graph, on which the graph is wrapped around the surface of a ball.

On this other interpretation, we’ll have:

• Different Cayley Paths have different endpoints.†

[So Ce is decomposed into U e, De, Le and Re, ignoring the center.]

• One can get from Re to
(←
R
)e

, and from De to
(←
D
)e

, by performing a rotation.

[So our duplication requires only rotations.]

2.1 An external coordinate system on the ball

• The x-axis runs from your right to your left through the center of the ball.

• The y-axis runs is orthogonal to the x-axis. It runs from the wall in front of you
to the wall in behind of you, through the center of the ball.

• The the z-axis is orthogonal to the other two. It runs from the ground to the sky,
through the center of the ball.

†Or close enough... See below!
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Figure 1: A translation together with an expansion



2.2 A spherical interpretation of the Graph

• The “center” of our graph is interpreted as an arbitrary point c on the surface of
our ball.

• A “step” is interpreted as the result of performing a rotation on the sphere, by a
certain angle θ:

– An “up” rotation is a counterclockwise rotation of θ degrees about the x axis.
(When you’re holding the ball in front of you, you perform this rotation by
rotating the ball from bottom to top.)

– A “down” rotation is a clockwise rotation of θ degrees about the x axis. (When
you’re holding the ball in front of you, you perform this rotation by rotating
the ball from top to bottom.)

– A “right” rotation is a counterclockwise rotation of θ degrees about the z axis.
(When you’re holding the ball in front of you, you perform this rotation by
rotating the ball from left to right.)

– A “left” rotation is a clockwise rotation of θ degrees about the z axis. (When
you’re holding the ball in front of you, you perform this rotation by rotating
the ball from right to left.)

2.3 The endpoints of Cayley Paths

• To each rotation ρ corresponds a function fρ, which takes each point p on the surface
of the ball to the point on the surface of the ball whose current location (relative
to an external reference frame) would come to be occupied by p were rotation ρ to
be performed.

• The “endpoint” of Cayley Path 〈ρ1, ρ2, . . . , ρn〉 is the point

fρ1(fρ2(. . . fρn(c) . . . ))

2.4 Two key results

When the rotation θ is chosen properly,‡ we get a nice result:

• Result 1: Different Cayley Paths always have different endpoints.§

In other words: if 〈ρ1, ρ2, . . . , ρn〉 and 〈σ1, σ2, . . . , σm〉 are distinct Cayley Paths,
then

fρ1(fρ2(. . . fρn(c) . . . )) 6= fσ1(fσ2(. . . fσm(c) . . . ))

• Result 2: One can get from Re to
(←
R
)e

, and from De to
(←
D
)e

, by performing a

rotation.

‡For instance: θ = arccos(1/3) ≈ 70.53◦
§Annoyingly, this result holds for almost every choice of our “central” point c but not quite every

choice. I’ll come back to this. . .



2.5 Duplicating the Surface of the Ball

• Partition the surface of the ball into cells, with two points are in same cell if they
are linked by a Cayley Path.

• Choose a “center” for each cell.¶

(This delivers a partition of the surface of the ball into Cayley Graphs.)

• Perform the duplication procedure to each Cayley Graph symultaneously.

2.5.1 A complication

Wait! For 〈ρ1, ρ2, ρ3, . . .〉 a Cayley Path:

• fρ1(fρ2(fρr(. . . ))) is a rotation (by Euler’s Theorem).

• So fρ1(fρ2(fρr(. . . ))) does not change the location of the points intersecting its axis
of rotation.

• So whenever c is such that some such problem point is the endpoint of some Cayley
Path, we will have different Cayley Paths sharing an endpoint.

The good news:

• There are only countably many problem points.

• One can deal with these points separately, by applying a sophisticated version of
the trick we used in Warm-Up Case 2.

2.6 Duplicating the Ball

• Use the same procedure as before, but rather than working with points on the
surface of the ball, work with the lines that connect the center of the ball with each
point.

• Wait! What about the center of the ball?

3 A region with no volume

Some of the Banach-Tarski pieces must be non-measurable must therefore lack definite
volumes!

¶Rather than specifying a center for each cell, we use the Axiom of Choice to prove that a set of
cell-centers exists.


