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Last week we learned about explicit conditions to determine the number of real roots of a
univariate polynomial. Today we will expand on these themes, and study two mathematical objects
of fundamental importance: the resultant of two polynomials, and the closely related discriminant.

The resultant will be used to decide whether two univariate polynomials have common roots,
while the discriminant will give information about the existence of multiple roots. Furthermore, we
will see the intimate connections between discriminants and the boundary of the cone of nonnegative
polynomials.

Besides the properties described above, a direct consequence of their definitions, there are many
other interesting applications of resultants and discriminant. We describe a few of them below,
and we will encounter them again in later lectures, when studying elimination theory and the
construction of cylindrical algebraic decompositions. For much more information about resultants
and discriminants, particularly their generalizations to the sparse and multipolynomial case, we
refer the reader to the very readable introductory article [Stu98] and the books [CLO97, GKZ94].

1 Resultants

Consider two polynomials p(x) and q(x), of degree n,m, respectively. We want to obtain an easily
checkable criterion to determine whether they have a common root, that is, there exists an x0 ∈ C
for which p(x0) = q(x0) = 0. There are several approaches, seemingly different at first sight, for
constructing such a criterion:

� Sylvester matrix: If p(x0) = q(x0) = 0, then we can write the following (n+m)× (n+m)
linear system:

pn pn−1 . . . p1 p0
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. . .

. . .
. . .

...
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qm
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0

xn+m−2
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...
xn0
xn−10
...

x0
1


=



p(x0)x
m−1
0

p(x0)x
m−2
0

...
p(x0)x0
p(x0)

q(x0)x
n−1
0

q(x0)x
n−2
0

...
q(x0)x0
q(x0)


= 0.

This implies that the matrix on the left-hand side, called the Sylvester matrix Sylx(p, q)
associated to p and q, is singular and thus its determinant must vanish. It is not too difficult
to show that the converse is also true; if det Sylx(p, q) = 0, then there exists a vector in the
kernel of Sylx(p, q) of the form shown in the equation above, and thus a common root x0.
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� Root products and companion matrices: Let αj , βk be the roots of p(x) and q(x),
respectively. By construction, the expression

n∏
j=1

m∏
k=1

(αj − βk)

vanishes if and only if there exists a root of p that is equal to a root of q. Although the
computation of this product seems to require explicit access to the roots, this can be avoided.
Multiplying by a convenient normalization factor, we have:

pmn q
n
m

n∏
j=1

m∏
k=1

(αj − βk) = pmn

n∏
j=1

q(αj) = pmn det q(Cp)

= (−1)nmqnm

m∏
k=1

p(βk) = (−1)nmqnm det p(Cq)
(1)

� Kronecker products: Using a well-known connection to Kronecker products, we can also
write (1) as

pmn q
n
m det(Cp ⊗ Im − In ⊗ Cq).

� Bézout matrix: Given p(x) and q(x) as before, consider the bivariate function

B(s, t) :=
p(s)q(t)− p(t)q(s)

s− t
.

It is easy to see that this is actually a polynomial in the variables s, t, and is invariant under
the interchange s ↔ t. Let d := max(n,m), and Bezx(p, q) be the symmetric d × d matrix
that represents this polynomial in the standard monomial basis, i.e.,

B(s, t) =


1
s
...

sd−1


T

Bezx(p, q)


1
t
...

td−1

 .
The Bézout matrix is singular if and only p and q have a common root.

Notice the differences with the Sylvester matrix: while that approach requires a non-symmetric
(n+m)× (n+m) matrix depending linearly on the coefficients, in the Bézout approach the
matrix is smaller and symmetric, but with entries that depend bilinearly on the pi, qi.

If can be shown that all these constructions are equivalent. They define exactly the same
polynomial, called the resultant of p and q, denoted as Resx(p, q):

Resx(p, q) = det Sylx(p, q)

= pmn det q(Cp)
= (−1)nmqnm det p(Cq)
= pmn q

n
m det(Cp ⊗ Im − In ⊗ Cq)

=
(−1)(

n
2)

pn−mn
det Bezx(p, q).
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The resultant is a homogeneous multivariate polynomial, with integer coefficients, and of degree
n + m in the n + m + 2 variables pj , qk. It vanishes if and only if the polynomials p and q have
a common root. Notice that the definition is not symmetric in its two arguments, Resx(p, q) =
(−1)nmRes(q, p) (of course, this does not matter in checking whether it is zero).

Remark 1. To compute the resultant of two polynomials p(x) and q(x) in Maple, you can use the
command resultant(p,q,x). In Mathematica, use instead Resultant[p,q,x].

2 Discriminants

As we have seen, the resultant allows us to write an easily checkable condition for the simultaneous
vanishing of two univariate polynomials. Can we use the resultant to produce a condition for a
polynomial to have a double root? Recall that if a polynomial p(x) has a double root at x0 (which
can be real or complex), then its derivative p′(x) also vanishes at x0. Thus, we can check for the
existence of a root of multiplicity two (or higher) by computing the resultant betweeen a polynomial
and its derivative.

Definition 2. The discriminant of a univariate polynomial p(x) is defined as

Disx(p) := (−1)(
n
2)

1

pn
Resx

(
p(x),

dp(x)

dx

)
.

Similarly to what we did in the resultant case, the discriminant can also be obtained by writing
a natural condition in terms of the roots αi of p(x):

Disx(p) = p2n−2n

∏
j<k

(αj − αk)2.

If p(x) has degree n, its discriminant is a homogeneous polynomial of degree 2n − 2 in its n + 1
coefficients pn, . . . , p0.

Example 3. Consider the quadratic univariate polynomial p(x) = ax2 + bx + c. Its discriminant
is:

Disx(p) = −1

a
Resx(ax2 + bx+ c, 2ax+ b) = b2 − 4ac.

For the cubic polynomial p(x) = ax3 + bx2 + cx+ d we have

Disx(p) = −27a2d2 + 18adcb+ b2c2 − 4b3d− 4ac3.

3 Applications

3.1 Polynomial equations

One of the most natural applications of resultants is in the solution of polynomial equations in two
variables. For this, consider a polynomial system

p(x, y) = 0, q(x, y) = 0, (2)

with only a finite number of solutions (which is generically the case). Consider a fixed value of
y0, and the two univariate polynomials p(x, y0), q(x, y0). If y0 corresponds to the y-component of
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Figure 1: Zero sets of the polynomials p(x, y) and q(x, y) in Example 4.

a root, then these two univariate polynomials clearly have a common root, hence their resultant
vanishes.

Therefore, to solve (2), we can compute Resx(p, q), which is a univariate polynomial in y.
Solving this univariate polynomial, we obtain a finite number of points yi. Backsubstituting in p
(or q), we obtain the corresponding values of xi. Naturally, the same construction can be used by
computing first the univariate polynomial in x given by Resy(p, q).

Example 4. Let p(x, y) = 2xy+ 3y3− 2x3−x− 3x2y2, and q(x, y) = 2x2y2− 4y3−x2 + 4y+x2y.
The corresponding zero sets are shown in Figure 1. The resultant (with respect to the x variable) is

Resx(p, q) = y(y + 1)3(72y8 − 252y7 + 270y6 − 145y5 + 192y4 − 160y3 + 28y + 4).

One particular root of this polynomial is y? ≈ 1.6727, with the corresponding value of x? ≈ −1.3853.

3.2 Implicitization of plane rational curves

Consider a plane curve parametrized by rational functions, i.e.,

x(t) =
p1(t)

q1(t)
, y(t) =

p2(t)

q2(t)
.

What is the implicit equation of the curve, i.e., what constraint h(x, y) = 0 must the points
(x, y) ∈ R2 that lie on the curve satisfy? The corresponding equation can be easily obtained by
computing a resultant to eliminate the parametrizing variable t, i.e.,

h(x, y) = Rest(q1(t) · x− p1(t), q2(t) · y − p2(t)).

Example 5. Consider the curve described by the parametrization.

x(t) =
t(1 + t2)

1 + t4
, y(t) =

t(1− t2)
1 + t4

. (3)

Its implicit equation can be computed by the resultant:

Rest((1 + t4)x− t(1 + t2), (1 + t4)y − t(1− t2)) = 4y4 + 8y2x2 + 4x4 + 4y2 − 4x2.
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Remark 6. The inverse problem (given an implicit polynomial equation for a curve, find a rational
parametrization) is not always solvable. In fact, there is a full characterization of when this is pos-
sible, in terms of a topological invariant of the curve called the genus (the rationally parametrizable
curves are exactly those of genus zero). For example, the curve x4 + y4 = 1 does not admit a
polynomial parametrization, since it has genus 3.

3.3 Eigenvalue distribution of random matrices

This section is based on the results in [RE08]. The eigenvalues of a random symmetric matrix be-
longing to a given ensemble can be characterized in terms of the asymptotic eigenvalue distribution
F (x) (e.g., the semi-circle law, Marčenko-Pastur, etc). Often, rather than the actual distribution,
it is more convenient to use instead some other equivalent object, such as its moment generating
function, Stieltjes transform, R-transform, etc. For many ensembles of interest, these auxiliary
transforms F̃ (z) are algebraic functions, in the sense that they satisfy an equation of the form
ψ(F̃ (z), z) = 0, where ψ(s, t) is a bivariate polynomial, and furthermore they can all be derived
from each other. As a consequence, to each given random ensemble of this class we can associate
a bivariate polynomial that uniquely describes the limiting eigenvalue distribution.

A natural question arises: given two matrices M1, M2, belonging to random ensembles with
associated polynomials ψ1(s, t) and ψ2(s, t), what can be said about the eigenvalue distribution
of the sum M1 + M2 (or the product M1M2)? Voiculescu has shown that under a certain natu-
ral independence condition (“freeness”), the R-transform of the sum is the sum of the individual
transforms (this is somewhat akin to the well-known fact that the pdf of the sum of independent
random variables is the convolution of the individual pdfs, or the additivity of the moment generat-
ing function). Under the freeness condition, the bivariate polynomial associated with the ensemble
M3 = M1 +M2 can be computed from the individual polynomials ψ1, ψ2 via:

ψ3(s, t) = Resu(ψ1(s− u, t), ψ2(u, t)).

Similar expressions are also possible for the product M1M2, also in terms of resultants. This allows
the computation of the spectra of arbitrary random ensembles, that can be built from individual
“building blocks” with known eigenvalue distributions.

We cannot provide a full description here of this area, and the very interesting connections with
“free probability.” We refer the reader to [RE08] for a more complete account.

4 The set of nonnegative polynomials

One of the main reasons why nonnegativity conditions about polynomials are difficult is because
these sets can have a quite complicated structure, even though they are always convex.

Recall from last lecture that we have defined Pn ⊂ Rn+1 as the set of nonnegative polynomials
of degree n. It is easy to see that if p(x) lies on the boundary of the set Pn, then it must have a real
root, of multiplicity at least two. Indeed, if there is no real root, then p(x) is in the strict interior
of P (small enough perturbations will not create a root), and if it has a simple real root it clearly
cannot be nonnegative.

Thus, on the boundary of Pn, the discriminant of p(x) must necessarily vanish. However, it
turns out that Disx(p) does not vanish only on the boundary, but it also vanishes at points inside
the set. Why is this?

Example 7. Consider the univariate polynomial p(x) = x4 +2ax2 + b. For what values of a, b does
it hold that p(x) ≥ 0 ∀x ∈ R? Since the leading term x4 has even degree and is strictly positive,
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Figure 2: The shaded region corresponds to the values of (a, b) for which the polynomial x4 +
2ax2 + b is nonnegative. The numbers indicate how many real roots the polynomial has.
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Figure 3: Region of nonnegativity of the polynomial x4 + 4ax3 + 6bx2 + 4ax+ 1, and number of
real roots.

p(x) is strictly positive if and only if it has no real roots. The discriminant of p(x) is equal to
256 b (a2 − b)2. The set of (a, b) for which p(x) is nonnegative is shown in Figure 2.

Here is a slightly different example, showing the same phenomenon.

Example 8. Consider now the polynomial p(x) = x4 + 4ax3 + 6bx2 + 4ax + 1. Its discriminant,
in factored form, is equal to 256(1 + 3b + 4a)(1 + 3b − 4a)(1 + 2a2 − 3b)2. The corresponding
nonnegativity region and number of real roots are presented in Figure 3.

As we can see, this creates some difficulties. For instance, even though we have a perfectly valid
analytic expression for the boundary of the set, we cannot get a good sense of “how far we are”
from the boundary by looking at the absolute value of the discriminant.

From the mathematical viewpoint, there are a couple of (unrelated?) reasons with these sets
cannot be directly handled by “standard” optimization, at least if we want to keep the polynomial
structure. One has to do with its algebraic structure, and the other one with convexity, and in
particular its facial structure.

Lemma 9 (e.g., [And03]). The set described in Figure 2 is not basic closed semialgebraic.

Remark 10. Notice that the convex sets described in Figures 2 and 3 both have an uncommon fea-
ture. They both have proper faces that are not exposed, i.e., they cannot be isolated by a supporting
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Figure 4: A three-dimensional convex set, described by one quadratic and one linear inequality,
whose projection on the (a, b) plane is equal to the set in Figure 2.

hyperplane1. Indeed, in Figure 2 the origin (0, 0) is a non-exposed zero-dimensional face, while in
Figure 3 the point (1, 1) has the same property. A non-exposed face is a known obstruction for a
convex set to be the feasible set of a semidefinite program, see [RG95].

Even though these sets have these complicating features, it turns out that we can often provide
some “good” representations. These are normally given as a projection from higher dimensional
spaces, where the object “upstairs” is much more smooth and well-behaved. For instance, as a
graphical illustration, in Figure 4 we can see the three-dimensional convex set {(a, b, t) ∈ R3 : b ≥
(a− t)2, t ≥ 0}, whose projection on the plane (a, b) is exactly the set discussed in Example 7 and
Figure 2.

The presence of “extraneous” components of the discriminant inside the feasible set is an im-
portant roadblock for the availability of “easily computable” barrier functions. Indeed, every poly-
nomial that vanishes on the boundary of the set Pn must necessarily have the discriminant as a
factor. This is an striking difference with the case of the case of the nonnegative orthant or the
PSD cone, where the standard barriers are given (up to a logarithm) by products of the linear
constraints or a determinant (which are polynomials). The way out of this problem is to produce
non-polynomial barrier functions, either by partial minimization from a higher-dimensional bar-
rier (i.e., projection) or other constructions such as the “universal” barrier function introduced by
Nesterov and Nemirovski [NN94].

In this direction, there have been several research efforts that aim at directly characterizing
barrier functions for the set of nonnegative polynomials (or related modifications). Among them,
we mention the work of Kao and Megretski [KM02] and Faybusovich [Fay02], both of which produce
barriers that rely on the computation of one or more integral expressions. Given the fact that these
integrals must be computed numerically, there is no clear consensus yet on how useful this approach
is in practical optimization problems.
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