
softwarestudio

All rights reserved. Daniel Jackson, 2018

Daniel Jackson and Arvind Satyanarayan

data modeling 
errors



classic errors



suppose this is the data model

!

owns Permanent
Shortcut

Shortcut

Expiring
ShortcutUser !

URL
expandsTo

Date

expires
!



bad: not a data model syntactically

missing relation 
names !

Permanent
Shortcut

Shortcut

Expiring
Shortcut

User

URL
has

Date

arrows too small & 
bad layout

invented features



bad: not a data model semantically

creates, uses

Shortcut

User

URL
isExpandedTo

Browser

comesFrom

redirectsWith

designer is 
thinking of actions, 

not state

designer thinking 
of agents, not 

atoms 



bad: implementation details

Shortcut URL

?
isPermanent

!

User Map

Entry

Bool Date

from, to

! !

url
shortcut

entries

UserProfile

profile
!

!

1:1 relation 
is a tipoff

collection types 
not needed

boolean field: 
should be subset

leads to weak 
multiplicities



bad: wrong semantics

field names, not 
sets: disjoint!

relation not 
subset; classification 

is per user

!urls

Permanent

URL

Expiring

User URLs
shortcut

EndDate

has

StartDate

has



bad smells of 
data modeling



don’t be lazy with names

why? 
it’s never as obvious as it seems 

choosing a good name helps designer get clarity  

✘

✔

Customer Order
has

Customer Order
pending

Customer Order
fulfilled



beware primitive types

Address String
zip

Address Zipcode
zip

why? 
type has syntactic or semantic properties 

so may want to store in special way, 
and/or use special validators

✘

✔



don’t duplicate

why? 
recognize shared properties & generalize  

leads to cleaner user interface & cleaner code

✘

✔

Seller

Buyer

Profile

sprofile
!

bprofile
!

?

?

Seller

User

Buyer

Profile! profile !



don’t mention low level ids

why? 
every object has an implicit identity anyway 

how it’s represented is an implementation detail  
but note: user-visible ids (such as usernames) are relevant

✘ User UserIdid

✔ User



don’t split types

why? 
distinct types are disjoint, so couldn’t ask whether movie and book have same title 

so atoms to be compared must have the same type

✘
Movie MovieTitle

title

Book BookTitle

basedOn

title

Movie Title
mtitle

Book

basedOn

btitle

✔

Movie

Item

Book

Title
title



don’t use set when order matters

why? 
tuples of a relation have no order  

implementer can choose an unordered collection

✘ Address Stringlines +

✔ Address String
line1, line2 ?

Address String
?

line1

line2

!

✔



use subsets, not boolean flags

why? 
flag is low level way to represent  
obscures dynamic classification 

prevents recording multiplicity graphically

✘
Student Boolean

isTA

Class

takes,
teaches

✔
Student

TA

Class
takes

teaches

+

++



don’t use attributes

why? 
attributes are an ill-defined idea, and just complicate the notation 

better to factor out the relations that matter

✘

User

id: String
name: String

✔

User Emailid

Profile

profile



don’t confuse state with actions

why? 
data model describes what is remembered 

that is, what’s stored in the state

✘ User Post

creates,
edits,
deletes

✔ User Post
posted



don’t use subsets for relational state

why? 
subset is with respect to a context (a user)  

without this, data structure won’t work

✘
User

Friend

✔

User

friends



another example of bad subset

✘ ✔
Theater

Closest
Theater

TheaterUser

Location

closest

currentLoc location



collections aren’t domain objects

why? 
collection objects are implementation details 

unless they have properties beyond their contents

✘ User Phone
Numbers

contact +
Phone

numbers!

✔ User Phone
phoneNos +

User Phone
phoneNos

preferred

+

!
✔



don’t split a relation

why? 
splitting obscures generalization 

leads to duplication in code

✘

File

Directory

contains

contains

✔

File

Object

Directory

contents



watch out for 3-way relations

why? 
student-class-grade is a 3-way relation 
need a “tuple” type such as Enrollment

✘

ClassStudent

Grade

classes

grade

Class

Student

Grade

classes

grades

✘

✔
Enrollment

Student

Grade

enrollments

grade

Class
class



another example of 3-way relation

✘ ✔

String

Movie

title

Theater movies

Time

at

Rating

rating

Showing

StringMovie title

Theater
showings

Time
at

movie

Rating

rating



model data that matters

why? 
no point modeling the easy stuff  

focus on the hard parts 
in this case how a student is identified matters 

home town probably does not (except maybe for MIT Giving)

✘

Student

Town

Namename

hometown

✔

Student

KerberosId

Namename

id?

!

don’t ask ‘what do I 
know about students?’

but: ‘what 
must my app know about 

students?’


